This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#include "my_template.hpp"
#include "ds/hashmap.hpp"
#include "random/hash_vector.hpp"
#include "mod/modint.hpp"
#include "other/connected_dp.hpp"
using mint = modint107;
mint calc_tdpc_grid(int H, int W) {
HashMap<int> MP;
using P = pair<vc<int>, int>;
vc<P> states;
auto get_hash = [&](vc<int> a, int b) -> ll {
a.eb(b);
return hash_vector<int>(a);
};
vc<int> init(H, -1);
init[0] = 0;
states.eb(init, 0);
vc<int> end(H, -1);
end[H - 1] = H - 1;
states.eb(end, H - 1);
FOR(i, 2) {
auto [a, b] = states[i];
ll h = get_hash(a, b);
MP[h] = i;
}
vc<pi> edges;
int p = -1;
while (1) {
++p;
if (p >= len(states)) break;
auto [now, r] = states[p];
for (auto&& [nxt, convert]: connected_dp_squares::next_states(now)) {
int s = convert[r];
if (s == -1) continue;
ll h = get_hash(nxt, s);
if (!MP.count(h)) {
MP[h] = len(states);
states.eb(nxt, s);
}
edges.eb(p, MP[h]);
}
}
int S = len(states);
vc<mint> dp(S);
dp[0] = mint(1);
FOR(W + 1) {
vc<mint> newdp(S);
for (auto&& [a, b]: edges) newdp[b] += dp[a];
swap(dp, newdp);
}
return dp[1];
}
void test() {
assert(calc_tdpc_grid(2, 2).val == 3);
assert(calc_tdpc_grid(5, 8).val == 950397139);
assert(calc_tdpc_grid(8, 5).val == 950397139);
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
test();
solve();
return 0;
}
#line 1 "test/mytest/tdpc_grid_dp.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 3 "test/mytest/tdpc_grid_dp.test.cpp"
#line 2 "ds/hashmap.hpp"
// u64 -> Val
template <typename Val, int LOG = 20, bool KEEP_IDS = false>
struct HashMap {
static constexpr int N = (1 << LOG);
u64* key;
Val* val;
vc<int> IDS;
bitset<N> used;
const int shift;
const u64 r = 11995408973635179863ULL;
HashMap() : key(new u64[N]), val(new Val[N]), shift(64 - LOG) {}
u32 hash(u64 x) {
static const u64 FIXED_RANDOM
= std::chrono::steady_clock::now().time_since_epoch().count();
return (u64(x + FIXED_RANDOM) * r) >> shift;
}
int index(const u64& k) {
int i = 0;
for (i = hash(k); used[i] && key[i] != k; (i += 1) &= (N - 1)) {}
return i;
}
Val& operator[](const u64& k) {
int i = index(k);
if (!used[i]) {
used[i] = 1, key[i] = k, val[i] = Val{};
if constexpr (KEEP_IDS) IDS.eb(i);
}
return val[i];
}
Val get(const u64& k, Val default_value) {
int i = index(k);
if (!used[i]) return default_value;
return val[i];
}
bool count(const u64& k) {
int i = index(k);
return used[i] && key[i] == k;
}
void reset() {
static_assert(KEEP_IDS);
for (auto&& i: IDS) used[i] = 0;
IDS.clear();
}
// f(key, val)
template <typename F>
void enumerate_all(F f) {
static_assert(KEEP_IDS);
for (auto&& i: IDS) f(key[i], val[i]);
}
};
#line 2 "random/hash_vector.hpp"
#line 2 "random/base.hpp"
u64 RNG_64() {
static uint64_t x_
= uint64_t(chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count())
* 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "mod/modint61.hpp"
struct modint61 {
static constexpr u64 mod = (1ULL << 61) - 1;
u64 val;
constexpr modint61() : val(0ULL) {}
constexpr modint61(u32 x) : val(x) {}
constexpr modint61(u64 x) : val(x % mod) {}
constexpr modint61(int x) : val((x < 0) ? (x + static_cast<ll>(mod)) : x) {}
constexpr modint61(ll x)
: val(((x %= static_cast<ll>(mod)) < 0) ? (x + static_cast<ll>(mod))
: x) {}
static constexpr u64 get_mod() { return mod; }
modint61 &operator+=(const modint61 &a) {
val = ((val += a.val) >= mod) ? (val - mod) : val;
return *this;
}
modint61 &operator-=(const modint61 &a) {
val = ((val -= a.val) >= mod) ? (val + mod) : val;
return *this;
}
modint61 &operator*=(const modint61 &a) {
const unsigned __int128 y = static_cast<unsigned __int128>(val) * a.val;
val = (y >> 61) + (y & mod);
val = (val >= mod) ? (val - mod) : val;
return *this;
}
modint61 &operator/=(const modint61 &a) { return (*this *= a.inverse()); }
modint61 operator+(const modint61 &p) const { return modint61(*this) += p; }
modint61 operator-(const modint61 &p) const { return modint61(*this) -= p; }
modint61 operator*(const modint61 &p) const { return modint61(*this) *= p; }
modint61 operator/(const modint61 &p) const { return modint61(*this) /= p; }
bool operator==(const modint61 &p) const { return val == p.val; }
bool operator!=(const modint61 &p) const { return val != p.val; }
modint61 inverse() const {
ll a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint61(u);
}
modint61 pow(ll n) const {
assert(n >= 0);
modint61 ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul, n >>= 1;
}
return ret;
}
};
#ifdef FASTIO
void rd(modint61 &x) {
fastio::rd(x.val);
assert(0 <= x.val && x.val < modint61::mod);
}
void wt(modint61 x) { fastio::wt(x.val); }
#endif
#line 5 "random/hash_vector.hpp"
template <typename T>
u64 hash_vector(vc<T> X) {
using mint = modint61;
static vc<mint> hash_base;
int n = len(X);
while (len(hash_base) <= n) { hash_base.eb(RNG(mint::get_mod())); }
mint H = 0;
FOR(i, n) H += hash_base[i] * mint(X[i]);
H += hash_base[n];
return H.val;
}
#line 2 "mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint::raw(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n && n < mod);
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static vector<mint> dat = {1, 1};
if (n < 0) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "mod/modint.hpp"
template <int mod>
struct modint {
static constexpr u32 umod = u32(mod);
static_assert(umod < u32(1) << 31);
u32 val;
static modint raw(u32 v) {
modint x;
x.val = v;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(u32 x) : val(x % umod) {}
constexpr modint(u64 x) : val(x % umod) {}
constexpr modint(u128 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = u64(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 120586241) return {20, 74066978};
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 998244353) return {23, 31};
if (mod == 1045430273) return {20, 363};
if (mod == 1051721729) return {20, 330};
if (mod == 1053818881) return {20, 2789};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
fastio::rd(x.val);
x.val %= mod;
// assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
fastio::wt(x.val);
}
#endif
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 3 "other/connected_dp.hpp"
namespace connected_dp_squares {
// pair<新しい状態、今の成分 → 新しい成分>
vc<pair<vc<int>, vc<int>>> next_states(const vc<int>& now) {
int N = len(now);
vc<pair<vc<int>, vc<int>>> res;
FOR(s, 1 << N) {
vc<int> par(N + N);
FOR(i, N) par[i] = (s & 1 << i ? i : -1);
FOR(i, N) par[N + i] = (now[i] == -1 ? -1 : now[i] + N);
auto find = [&](int x) -> int {
while (par[x] != x) { x = par[x] = par[par[x]]; }
return x;
};
auto merge = [&](int a, int b) -> void {
a = find(a), b = find(b);
if (a == b) return;
if (a > b) swap(a, b);
par[b] = a;
};
FOR(i, N - 1) if (par[i] != -1 && par[i + 1] != -1) merge(i, i + 1);
FOR(i, N) if (par[i] != -1 && par[N + i] != -1) merge(i, N + i);
FOR(i, N + N) if (par[i] != -1) par[i] = find(i);
FOR(i, N, N + N) if (par[i] >= N) par[i] = -1;
res.eb(vc<int>(par.begin(), par.begin() + N),
vc<int>(par.begin() + N, par.end()));
}
return res;
}
vc<int> reverse_state(const vc<int>& now) {
int N = len(now);
vc<int> max_i(N, -1);
FOR(i, N) if (now[i] != -1) max_i[now[i]] = i;
vc<int> rev(N, -1);
FOR(i, N) {
if (now[i] == -1) continue;
int x = max_i[now[i]];
rev[N - 1 - i] = N - 1 - x;
}
return rev;
}
// 0, 1 :空の列、領域の手前、後ろ
// 連結領域をひとつ作る。
// 状態:-1 が選んでいない。0,1,2,3 等は同じ成分には同じ値が入る。
// [states, edges]
pair<vvc<int>, vc<pair<int, int>>> connedted_dp_graph(int N,
bool merge_reverse) {
static HashMap<int, 20, true> MP;
MP.reset();
vvc<int> states;
vc<pair<int, int>> edges;
states.eb(vc<int>(N, -1));
states.eb(vc<int>(N, -1));
MP[hash_vector<int>(states[0])] = 0;
int p = -1;
while (1) {
if (++p == len(states)) break;
if (p == 1) {
edges.eb(1, 1);
continue;
}
vc<int> now = states[p];
for (auto&& [nxt, convert]: next_states(now)) {
// 今の成分数、消える成分数
int a = 0, b = 0;
FOR(v, N) if (now[v] == v) {
++a;
if (convert[v] == -1) ++b;
}
// 消える成分があってよいのは、終状態にいくときのみ
if (b >= 2) continue;
if (b == 1) {
if (MAX(nxt) != -1) continue;
edges.eb(p, 1);
continue;
}
u64 h = hash_vector<int>(nxt);
if (merge_reverse) { chmin(h, hash_vector<int>(reverse_state(nxt))); }
if (!MP.count(h)) { MP[h] = len(states), states.eb(nxt); }
edges.eb(p, MP[h]);
}
}
return {states, edges};
}
// 0, 1 :空の列、領域の手前、後ろ
// 多角形(空洞なし)をひとつ作る。
// 状態:-1 が選んでいない。0,1,2,3 等は同じ成分には同じ値が入る。
// [states, edges]
pair<vvc<int>, vc<pair<int, int>>> polygon_dp_graph(int N) {
static HashMap<int, 20, true> MP;
MP.reset();
vvc<int> states;
vc<pair<int, int>> edges;
states.eb(vc<int>(N, -1));
states.eb(vc<int>(N, -1));
MP[hash_vector<int>(states[0])] = 0;
int p = -1;
while (1) {
if (++p == len(states)) break;
if (p == 1) {
edges.eb(1, 1);
continue;
}
vc<int> now = states[p];
for (auto&& [nxt, convert]: next_states(now)) {
// 今の成分数、消える成分数
int a = 0, b = 0;
FOR(v, N) if (now[v] == v) {
++a;
if (convert[v] == -1) ++b;
}
// 消える成分があってよいのは、終状態にいくときのみ
if (b >= 2) continue;
if (b == 1) {
if (MAX(nxt) != -1) continue;
edges.eb(p, 1);
continue;
}
bool ok = [&](vc<int>& now, vc<int>& nxt, vc<int>& convert) -> bool {
// 頂点のみで接するのはダメ
FOR(i, N - 1) {
bool a1 = now[i] != -1, a2 = now[i + 1] != -1;
bool b1 = nxt[i] != -1, b2 = nxt[i + 1] != -1;
if (a1 && !a2 && !b1 && b2) return false;
if (!a1 && a2 && b1 && !b2) return false;
}
// empty region を閉じることと、異なる連結成分がマージされることが同値
int close = 0;
int after = 0;
vc<bool> is_new(N, 1);
FOR(i, N) if (convert[i] != -1) is_new[convert[i]] = 0;
FOR(i, N) if (nxt[i] == i && !is_new[i])++ after;
vc<int> I;
FOR(i, N) if (now[i] != -1) I.eb(i);
FOR(k, len(I) - 1) {
int i = I[k], j = I[k + 1];
if (j == i + 1) continue;
bool cl = 1;
FOR(p, i + 1, j) if (nxt[p] == -1) cl = 0;
if (cl) close++;
}
return a - close == after;
}(now, nxt, convert);
if (!ok) continue;
u64 h = hash_vector<int>(nxt);
int idx = MP.index(h);
if (!MP.used[idx]) {
MP.used[idx] = 1, MP.IDS.eb(idx), MP.key[idx] = h,
MP.val[idx] = len(states);
states.eb(nxt);
}
edges.eb(p, MP.val[idx]);
}
}
return {states, edges};
}
} // namespace connected_dp_squares
#line 8 "test/mytest/tdpc_grid_dp.test.cpp"
using mint = modint107;
mint calc_tdpc_grid(int H, int W) {
HashMap<int> MP;
using P = pair<vc<int>, int>;
vc<P> states;
auto get_hash = [&](vc<int> a, int b) -> ll {
a.eb(b);
return hash_vector<int>(a);
};
vc<int> init(H, -1);
init[0] = 0;
states.eb(init, 0);
vc<int> end(H, -1);
end[H - 1] = H - 1;
states.eb(end, H - 1);
FOR(i, 2) {
auto [a, b] = states[i];
ll h = get_hash(a, b);
MP[h] = i;
}
vc<pi> edges;
int p = -1;
while (1) {
++p;
if (p >= len(states)) break;
auto [now, r] = states[p];
for (auto&& [nxt, convert]: connected_dp_squares::next_states(now)) {
int s = convert[r];
if (s == -1) continue;
ll h = get_hash(nxt, s);
if (!MP.count(h)) {
MP[h] = len(states);
states.eb(nxt, s);
}
edges.eb(p, MP[h]);
}
}
int S = len(states);
vc<mint> dp(S);
dp[0] = mint(1);
FOR(W + 1) {
vc<mint> newdp(S);
for (auto&& [a, b]: edges) newdp[b] += dp[a];
swap(dp, newdp);
}
return dp[1];
}
void test() {
assert(calc_tdpc_grid(2, 2).val == 3);
assert(calc_tdpc_grid(5, 8).val == 950397139);
assert(calc_tdpc_grid(8, 5).val == 950397139);
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
test();
solve();
return 0;
}