This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#include "my_template.hpp"
#include "flow/min_cost_matching_on_line.hpp"
void test() {
// https://atcoder.jp/contests/kupc2016/tasks/kupc2016_h
vi A = {3, 1}, B = {1, 5};
assert(min_cost_matching_on_line_1(A, B) == 2);
A = {3, 3, 1, 1, 1}, B = {1, 2, 3, 4, 5};
assert(min_cost_matching_on_line_1(A, B) == 6);
A = {10, 2, 5, 6, 2, 6, 3, 2, 2, 5, 3, 11, 13, 2,
2, 7, 7, 3, 9, 5, 13, 4, 17, 2, 2, 2, 4},
B = {46, 3, 4, 2, 10, 2, 5, 2, 6, 7, 20, 13, 9, 49,
3, 8, 4, 3, 19, 9, 3, 5, 4, 13, 9, 5, 7};
assert(min_cost_matching_on_line_1(A, B) == 48);
A = {1236501, 770807, 4003004, 131688, 1965412, 266841,
3980782, 565060, 816313, 192940, 541896, 250801,
217586, 3806049, 1220252, 1161079, 31168, 2008961},
B = {3878348, 423911, 8031742, 1035156, 24256, 10344593,
19379, 3867285, 4481365, 1475384, 1959412, 1383457,
164869, 4633165, 6674637, 9732852, 10459147, 2810788};
assert(min_cost_matching_on_line_1(A, B) == 6302172);
A = {1234567891, 1}, B = {1, 99999999999};
assert(min_cost_matching_on_line_1(A, B) == 1234567890);
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
test();
solve();
return 0;
}
#line 1 "test/mytest/min_cost_matching_on_line.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "convex/slope.hpp"
struct Slope_Trick {
static constexpr ll LMIN = -infty<ll>;
static constexpr ll RMAX = infty<ll>;
pq<ll> que_l;
pqg<ll> que_r;
ll add_l, add_r;
i128 min_f; // infty を足し引きしても壊れないように i128 にする
Slope_Trick() : add_l(0), add_r(0), min_f(0) {}
Slope_Trick(vc<ll> left, vc<ll> right)
: que_l(all(left)), que_r(all(right)), add_l(0), add_r(0), min_f(0) {}
int size() { return len(que_l) + len(que_r); }
tuple<ll, ll, i128> get_min() { return {top_L(), top_R(), min_f}; }
void add_const(ll a) { min_f += a; }
// O(|a| log N)
void add_linear(ll a, ll b) {
min_f += b;
FOR(max<int>(a, 0)) {
ll x = pop_L();
min_f += x;
push_R(x);
}
FOR(max<int>(-a, 0)) {
ll x = pop_R();
min_f -= x;
push_L(x);
}
}
// (a-x)+
void add_a_minus_x(ll a) {
min_f += max<ll>(0, a - top_R());
push_R(a), push_L(pop_R());
}
// (x-a)+
void add_x_minus_a(ll a) {
min_f += max<ll>(0, top_L() - a);
push_L(a), push_R(pop_L());
}
// |x-a|
void add_abs(ll a) {
add_a_minus_x(a);
add_x_minus_a(a);
}
// 増加側を消して、減少側のみにする
void clear_right() { que_r = pqg<ll>(); }
// 減少側を消して、増加側のみにする
void clear_left() { que_l = pq<ll>(); }
void shift(const ll &a) { add_l += a, add_r += a; }
// g(x) = min_{x-b <= y <= x-a} f(y)
void sliding_window_minimum(const ll &a, const ll &b) {
add_l += a, add_r += b;
}
// O(size log(size))
i128 eval(ll x) {
i128 y = min_f;
pq<ll> que_l_copy = que_l;
pqg<ll> que_r_copy = que_r;
while (len(que_l_copy)) { y += max<ll>(0, (POP(que_l_copy) + add_l) - x); }
while (len(que_r_copy)) { y += max<ll>(0, x - (POP(que_r_copy) + add_r)); }
return y;
}
void push_R(const ll &x) { que_r.emplace(x - add_r); }
void push_L(const ll &x) { que_l.emplace(x - add_l); }
ll top_R() {
if (que_r.empty()) que_r.emplace(RMAX);
return que_r.top() + add_r;
}
ll top_L() {
if (que_l.empty()) que_l.emplace(LMIN);
return que_l.top() + add_l;
}
ll pop_R() {
ll res = top_R();
que_r.pop();
return res;
}
ll pop_L() {
ll res = top_L();
que_l.pop();
return res;
}
#ifdef FASTIO
void debug() {
vi left, right;
pq<ll> que_l_copy = que_l;
pqg<ll> que_r_copy = que_r;
while (len(que_l_copy)) { left.eb(POP(que_l_copy) + add_l); }
while (len(que_r_copy)) { right.eb(POP(que_r_copy) + add_r); }
sort(all(left));
sort(all(right));
print("min_f", min_f, "left", left, "right", right);
}
#endif
};
#line 2 "flow/min_cost_matching_on_line.hpp"
// 座標 0, ..., N-1 に A_i 個ある
// 座標 0, ..., N-1 で B_i 個まで受け入れられる
ll min_cost_matching_on_line_1(vi A, vi B) {
assert(SUM<ll>(A) <= SUM<ll>(B));
const int N = len(A);
Slope_Trick f(vi(N + 1, 0), vi());
FOR(i, N) {
ll c = A[i] - B[i];
f.shift(c);
f.clear_right();
f.add_abs(0);
}
return f.eval(0);
}
#line 4 "test/mytest/min_cost_matching_on_line.test.cpp"
void test() {
// https://atcoder.jp/contests/kupc2016/tasks/kupc2016_h
vi A = {3, 1}, B = {1, 5};
assert(min_cost_matching_on_line_1(A, B) == 2);
A = {3, 3, 1, 1, 1}, B = {1, 2, 3, 4, 5};
assert(min_cost_matching_on_line_1(A, B) == 6);
A = {10, 2, 5, 6, 2, 6, 3, 2, 2, 5, 3, 11, 13, 2,
2, 7, 7, 3, 9, 5, 13, 4, 17, 2, 2, 2, 4},
B = {46, 3, 4, 2, 10, 2, 5, 2, 6, 7, 20, 13, 9, 49,
3, 8, 4, 3, 19, 9, 3, 5, 4, 13, 9, 5, 7};
assert(min_cost_matching_on_line_1(A, B) == 48);
A = {1236501, 770807, 4003004, 131688, 1965412, 266841,
3980782, 565060, 816313, 192940, 541896, 250801,
217586, 3806049, 1220252, 1161079, 31168, 2008961},
B = {3878348, 423911, 8031742, 1035156, 24256, 10344593,
19379, 3867285, 4481365, 1475384, 1959412, 1383457,
164869, 4633165, 6674637, 9732852, 10459147, 2810788};
assert(min_cost_matching_on_line_1(A, B) == 6302172);
A = {1234567891, 1}, B = {1, 99999999999};
assert(min_cost_matching_on_line_1(A, B) == 1234567890);
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
test();
solve();
return 0;
}