This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#include "my_template.hpp"
#include "enumerate/ceil_range.hpp"
#include "enumerate/floor_range.hpp"
void test_floor() {
using T = tuple<ll, ll, ll>;
auto F = [&](ll N) -> vc<T> {
vc<T> dat;
auto f = [&](ll q, ll l, ll r) -> void { dat.eb(q, l, r); };
floor_range(N, f);
return dat;
};
auto G = [&](ll N) -> vc<T> {
vvc<ll> tmp(N + 1);
FOR(x, 1, N + 1) tmp[floor(N, x)].eb(x);
vc<T> dat;
FOR(x, 1, N + 1) {
if (len(tmp[x])) {
ll lo = tmp[x][0];
ll hi = tmp[x].back();
dat.eb(x, lo, hi + 1);
}
}
return dat;
};
FOR(N, 1, 100) { assert(F(N) == G(N)); }
}
void test_ceil() {
using T = tuple<ll, ll, ll>;
auto F = [&](ll N) -> vc<T> {
vc<T> dat;
auto f = [&](ll q, ll l, ll r) -> void { dat.eb(q, l, r); };
ceil_range(N, f);
return dat;
};
auto G = [&](ll N) -> vc<T> {
vvc<ll> tmp(N + 1);
FOR(x, 1, N + 1) tmp[ceil(N, x)].eb(x);
vc<T> dat;
FOR(x, 1, N + 1) {
if (x == 1) {
dat.eb(x, N, infty<ll>);
continue;
}
if (len(tmp[x])) {
ll lo = tmp[x][0];
ll hi = tmp[x].back();
dat.eb(x, lo, hi + 1);
}
}
return dat;
};
FOR(N, 1, 100) { assert(F(N) == G(N)); }
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
test_floor();
test_ceil();
solve();
return 0;
}
#line 1 "test/mytest/floor_ceil_ranges.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "enumerate/ceil_range.hpp"
// 商が q の区間 [l,r) を q について昇順
template <typename F>
void ceil_range(ll N, F f) {
assert(N <= (1LL << 50));
ll sq = sqrtl(N);
ll prev = infty<ll>;
for (int q = 1; q <= sq; ++q) {
ll x = double(N + q - 1) / q;
f(q, x, prev), prev = x;
}
int n = (N <= sq * sq + sq ? sq : sq + 1);
if (N == sq * sq) --n;
for (int l = n; l >= 1; --l) { f(double(N + l - 1) / l, l, l + 1); }
}
#line 1 "enumerate/floor_range.hpp"
// 商が q の区間 [l,r) を q について昇順
template <typename F>
void floor_range(u64 N, F f) {
assert(N <= (u64(1) << 50));
u64 sq = sqrtl(N);
u32 n = (sq * sq + sq <= N ? sq : sq - 1);
u64 prev = N + 1;
for (u32 q = 1; q <= n; ++q) {
u64 x = double(N) / (q + 1) + 1;
f(q, x, prev), prev = x;
}
for (u32 l = sq; l >= 1; --l) { f(u64(double(N) / l), l, l + 1); }
}
#line 5 "test/mytest/floor_ceil_ranges.test.cpp"
void test_floor() {
using T = tuple<ll, ll, ll>;
auto F = [&](ll N) -> vc<T> {
vc<T> dat;
auto f = [&](ll q, ll l, ll r) -> void { dat.eb(q, l, r); };
floor_range(N, f);
return dat;
};
auto G = [&](ll N) -> vc<T> {
vvc<ll> tmp(N + 1);
FOR(x, 1, N + 1) tmp[floor(N, x)].eb(x);
vc<T> dat;
FOR(x, 1, N + 1) {
if (len(tmp[x])) {
ll lo = tmp[x][0];
ll hi = tmp[x].back();
dat.eb(x, lo, hi + 1);
}
}
return dat;
};
FOR(N, 1, 100) { assert(F(N) == G(N)); }
}
void test_ceil() {
using T = tuple<ll, ll, ll>;
auto F = [&](ll N) -> vc<T> {
vc<T> dat;
auto f = [&](ll q, ll l, ll r) -> void { dat.eb(q, l, r); };
ceil_range(N, f);
return dat;
};
auto G = [&](ll N) -> vc<T> {
vvc<ll> tmp(N + 1);
FOR(x, 1, N + 1) tmp[ceil(N, x)].eb(x);
vc<T> dat;
FOR(x, 1, N + 1) {
if (x == 1) {
dat.eb(x, N, infty<ll>);
continue;
}
if (len(tmp[x])) {
ll lo = tmp[x][0];
ll hi = tmp[x].back();
dat.eb(x, lo, hi + 1);
}
}
return dat;
};
FOR(N, 1, 100) { assert(F(N) == G(N)); }
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
test_floor();
test_ceil();
solve();
return 0;
}