library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub maspypy/library

:heavy_check_mark: test/mytest/fibonacci_search.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#include "my_template.hpp"
#include "other/fibonacci_search.hpp"
#include "enumerate/product.hpp"

void test() {
  // permutation
  FOR(N, 1, 10) {
    vc<int> A(N);
    iota(all(A), 0);
    do {
      auto f = [&](int i) -> int { return A[i]; };
      auto [i, y] = fibonacci_search<int, true>(f, 0, N);
      assert(0 <= i && i < N);
      if (0 < i) assert(A[i] < A[i - 1]);
      if (i + 1 < N) assert(A[i] < A[i + 1]);
    } while (next_permutation(all(A)));
  }
  // [0,1]
  FOR(N, 1, 18) {
    FOR(s, 1 << N) {
      vc<int> A(N);
      FOR(i, N) A[i] = s >> i & 1;
      auto f = [&](int i) -> int { return A[i]; };
      auto [i, y] = fibonacci_search<int, true>(f, 0, N);
      assert(0 <= i && i < N);
      if (0 < i) assert(A[i] <= A[i - 1]);
      if (i + 1 < N) assert(A[i] <= A[i + 1]);
    }
  }
  // [0,1,2]
  FOR(N, 1, 13) {
    enumerate_product(vc<int>(N, 3), [&](vc<int> A) -> void {
      auto f = [&](int i) -> int { return A[i]; };
      auto [i, y] = fibonacci_search<int, true>(f, 0, N);
      assert(0 <= i && i < N);
      if (0 < i) assert(A[i] <= A[i - 1]);
      if (i + 1 < N) assert(A[i] <= A[i + 1]);
    });
  }
}

void solve() {
  int a, b;
  cin >> a >> b;
  cout << a + b << "\n";
}

signed main() {
  test();
  solve();
  return 0;
}
#line 1 "test/mytest/fibonacci_search.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}
#endif
#line 1 "other/fibonacci_search.hpp"
// [L, R) での極小値をひとつ求める、単峰は不要
template <typename T, bool MINIMIZE, typename F>
pair<ll, T> fibonacci_search(F f, ll L, ll R) {
  assert(L < R);
  --R;
  ll a = L, b = L + 1, c = L + 2, d = L + 3;
  int n = 0;
  while (d < R) { b = c, c = d, d = b + c - a, ++n; }
  auto get = [&](ll x) -> T {
    if (R < x) return infty<T>;
    return (MINIMIZE ? f(x) : -f(x));
  };
  T ya = get(a), yb = get(b), yc = get(c), yd = get(d);
  // この中で極小ならば全体でも極小、を維持する
  FOR(n) {
    if (yb <= yc) {
      d = c, c = b, b = a + d - c;
      yd = yc, yc = yb, yb = get(b);
    } else {
      a = b, b = c, c = a + d - b;
      ya = yb, yb = yc, yc = get(c);
    }
  }
  ll x = a;
  T y = ya;
  if (chmin(y, yb)) x = b;
  if (chmin(y, yc)) x = c;
  if (chmin(y, yd)) x = d;
  if (MINIMIZE) return {x, y};
  return {x, -y};
}
#line 1 "enumerate/product.hpp"
// [0, A0) x [0, A1) x ...
template <typename F>
void enumerate_product(vc<int> A, F query) {
  int N = len(A);
  auto dfs = [&](auto& dfs, vc<int>& p) -> void {
    int n = len(p);
    if (n == N) return query(p);
    FOR(x, A[n]) {
      p.eb(x);
      dfs(dfs, p);
      p.pop_back();
    }
  };
  vc<int> p;
  dfs(dfs, p);
}
#line 5 "test/mytest/fibonacci_search.test.cpp"

void test() {
  // permutation
  FOR(N, 1, 10) {
    vc<int> A(N);
    iota(all(A), 0);
    do {
      auto f = [&](int i) -> int { return A[i]; };
      auto [i, y] = fibonacci_search<int, true>(f, 0, N);
      assert(0 <= i && i < N);
      if (0 < i) assert(A[i] < A[i - 1]);
      if (i + 1 < N) assert(A[i] < A[i + 1]);
    } while (next_permutation(all(A)));
  }
  // [0,1]
  FOR(N, 1, 18) {
    FOR(s, 1 << N) {
      vc<int> A(N);
      FOR(i, N) A[i] = s >> i & 1;
      auto f = [&](int i) -> int { return A[i]; };
      auto [i, y] = fibonacci_search<int, true>(f, 0, N);
      assert(0 <= i && i < N);
      if (0 < i) assert(A[i] <= A[i - 1]);
      if (i + 1 < N) assert(A[i] <= A[i + 1]);
    }
  }
  // [0,1,2]
  FOR(N, 1, 13) {
    enumerate_product(vc<int>(N, 3), [&](vc<int> A) -> void {
      auto f = [&](int i) -> int { return A[i]; };
      auto [i, y] = fibonacci_search<int, true>(f, 0, N);
      assert(0 <= i && i < N);
      if (0 < i) assert(A[i] <= A[i - 1]);
      if (i + 1 < N) assert(A[i] <= A[i + 1]);
    });
  }
}

void solve() {
  int a, b;
  cin >> a >> b;
  cout << a + b << "\n";
}

signed main() {
  test();
  solve();
  return 0;
}
Back to top page