This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#include "my_template.hpp"
#include "alg/monoid/min.hpp"
#include "ds/segtree/dynamic_segtree_sparse.hpp"
#include "random/base.hpp"
void test() {
using Mono = Monoid_Min<int>;
int unit = Mono::unit();
FOR(100) {
int N = RNG(1, 100);
vc<int> A(N, unit);
Dynamic_SegTree_Sparse<Mono, false, 2000> X(0, N);
using np = typename decltype(X)::np;
np root = nullptr;
int Q = RNG(1, 1000);
FOR(Q) {
int t = RNG(0, 4);
int L = RNG(0, N);
int R = RNG(0, N);
if (L > R) swap(L, R);
++R;
if (t == 0) {
int i = RNG(0, N);
int x = RNG(1, 100);
root = X.set(root, i, x);
A[i] = x;
}
if (t == 1) {
int i = RNG(0, N);
int x = RNG(1, 100);
root = X.multiply(root, i, x);
chmin(A[i], x);
}
if (t == 2) {
vc<int> B = {A.begin() + L, A.begin() + R};
assert(X.prod(root, L, R) == MIN(B));
}
if (t == 3) {
// max_right
int LIM = RNG(1, 100);
auto check = [&](auto e) -> bool { return e >= LIM; };
int naive = [&]() -> int {
ll mi = unit;
FOR(i, L, N) {
chmin(mi, A[i]);
if (mi < LIM) return i;
}
return N;
}();
assert(naive == X.max_right(root, check, L));
}
}
}
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
test();
solve();
return 0;
}
#line 1 "test/mytest/dynamic_segtree_sparse.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 2 "alg/monoid/min.hpp"
template <typename E>
struct Monoid_Min {
using X = E;
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return min(x, y); }
static constexpr X unit() { return infty<E>; }
static constexpr bool commute = true;
};
#line 2 "ds/segtree/dynamic_segtree_sparse.hpp"
// 常にほとんどの要素が unit であることが保証されるような動的セグ木
// したがって、default_prod の類は持たせられず、acted monoid も一般には扱えない
// 永続化しない場合のノード数を O(N) に抑えることができるのが利点
template <typename Monoid, bool PERSISTENT, int NODES>
struct Dynamic_SegTree_Sparse {
using MX = Monoid;
using X = typename MX::value_type;
struct Node {
ll idx;
Node *l, *r;
X prod, x;
};
const ll L0, R0;
Node *pool;
int pid;
using np = Node *;
Dynamic_SegTree_Sparse(ll L0, ll R0) : L0(L0), R0(R0), pid(0) {
pool = new Node[NODES];
}
np new_root() { return nullptr; }
np new_node(ll idx, const X x) {
pool[pid].idx = idx;
pool[pid].l = pool[pid].r = nullptr;
pool[pid].x = pool[pid].prod = x;
return &(pool[pid++]);
}
X prod(np root, ll l, ll r) {
assert(L0 <= l && l <= r && r <= R0);
if (l == r) return MX::unit();
X x = MX::unit();
prod_rec(root, L0, R0, l, r, x);
return x;
}
X prod_all(np root) { return prod(root, L0, R0); }
np set(np root, ll i, const X &x) {
assert(L0 <= i && i < R0);
return set_rec(root, L0, R0, i, x);
}
np multiply(np root, ll i, const X &x) {
assert(L0 <= i && i < R0);
return multiply_rec(root, L0, R0, i, x);
}
template <typename F>
ll max_right(np root, F check, ll L) {
assert(L0 <= L && L <= R0 && check(MX::unit()));
X x = MX::unit();
return max_right_rec(root, check, L0, R0, L, x);
}
template <typename F>
ll min_left(np root, F check, ll R) {
assert(L0 <= R && R <= R0 && check(MX::unit()));
X x = MX::unit();
return min_left_rec(root, check, L0, R0, R, x);
}
void reset() { pid = 0; }
vc<pair<ll, X>> get_all(np root) {
vc<pair<ll, X>> res;
auto dfs = [&](auto &dfs, np c) -> void {
if (!c) return;
dfs(dfs, c->l);
res.eb(c->idx, c->x);
dfs(dfs, c->r);
};
dfs(dfs, root);
return res;
}
X get(np root, ll idx) {
auto dfs = [&](auto &dfs, np c) -> X {
if (!c) return Monoid::unit();
if (idx == c->idx) return c->x;
if (idx < (c->idx)) return dfs(dfs, c->l);
return dfs(dfs, c->r);
};
return dfs(dfs, root);
}
private:
void update(np c) {
c->prod = c->x;
if (c->l) c->prod = MX::op(c->l->prod, c->prod);
if (c->r) c->prod = MX::op(c->prod, c->r->prod);
}
np copy_node(np c) {
if (!c || !PERSISTENT) return c;
pool[pid].idx = c->idx;
pool[pid].l = c->l;
pool[pid].r = c->r;
pool[pid].x = c->x;
pool[pid].prod = c->prod;
return &(pool[pid++]);
}
np set_rec(np c, ll l, ll r, ll i, X x) {
if (!c) {
c = new_node(i, x);
return c;
}
c = copy_node(c);
if (c->idx == i) {
c->x = x;
update(c);
return c;
}
ll m = (l + r) / 2;
if (i < m) {
if (c->idx < i) swap(c->idx, i), swap(c->x, x);
c->l = set_rec(c->l, l, m, i, x);
}
if (m <= i) {
if (i < c->idx) swap(c->idx, i), swap(c->x, x);
c->r = set_rec(c->r, m, r, i, x);
}
update(c);
return c;
}
np multiply_rec(np c, ll l, ll r, ll i, X x) {
if (!c) {
c = new_node(i, x);
return c;
}
c = copy_node(c);
if (c->idx == i) {
c->x = MX::op(c->x, x);
update(c);
return c;
}
ll m = (l + r) / 2;
if (i < m) {
if (c->idx < i) swap(c->idx, i), swap(c->x, x);
c->l = multiply_rec(c->l, l, m, i, x);
}
if (m <= i) {
if (i < c->idx) swap(c->idx, i), swap(c->x, x);
c->r = multiply_rec(c->r, m, r, i, x);
}
update(c);
return c;
}
void prod_rec(np c, ll l, ll r, ll ql, ll qr, X &x) {
chmax(ql, l);
chmin(qr, r);
if (ql >= qr || !c) return;
if (l == ql && r == qr) {
x = MX::op(x, c->prod);
return;
}
ll m = (l + r) / 2;
prod_rec(c->l, l, m, ql, qr, x);
if (ql <= (c->idx) && (c->idx) < qr) x = MX::op(x, c->x);
prod_rec(c->r, m, r, ql, qr, x);
}
template <typename F>
ll max_right_rec(np c, const F &check, ll l, ll r, ll ql, X &x) {
if (!c || r <= ql) return R0;
if (check(MX::op(x, c->prod))) {
x = MX::op(x, c->prod);
return R0;
}
ll m = (l + r) / 2;
ll k = max_right_rec(c->l, check, l, m, ql, x);
if (k != R0) return k;
if (ql <= (c->idx)) {
x = MX::op(x, c->x);
if (!check(x)) return c->idx;
}
return max_right_rec(c->r, check, m, r, ql, x);
}
template <typename F>
ll min_left_rec(np c, const F &check, ll l, ll r, ll qr, X &x) {
if (!c || qr <= l) return L0;
if (check(MX::op(c->prod, x))) {
x = MX::op(c->prod, x);
return L0;
}
ll m = (l + r) / 2;
ll k = min_left_rec(c->r, check, m, r, qr, x);
if (k != L0) return k;
if (c->idx < qr) {
x = MX::op(c->x, x);
if (!check(x)) return c->idx + 1;
}
return min_left_rec(c->l, check, l, m, qr, x);
}
};
#line 2 "random/base.hpp"
u64 RNG_64() {
static uint64_t x_
= uint64_t(chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count())
* 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 6 "test/mytest/dynamic_segtree_sparse.test.cpp"
void test() {
using Mono = Monoid_Min<int>;
int unit = Mono::unit();
FOR(100) {
int N = RNG(1, 100);
vc<int> A(N, unit);
Dynamic_SegTree_Sparse<Mono, false, 2000> X(0, N);
using np = typename decltype(X)::np;
np root = nullptr;
int Q = RNG(1, 1000);
FOR(Q) {
int t = RNG(0, 4);
int L = RNG(0, N);
int R = RNG(0, N);
if (L > R) swap(L, R);
++R;
if (t == 0) {
int i = RNG(0, N);
int x = RNG(1, 100);
root = X.set(root, i, x);
A[i] = x;
}
if (t == 1) {
int i = RNG(0, N);
int x = RNG(1, 100);
root = X.multiply(root, i, x);
chmin(A[i], x);
}
if (t == 2) {
vc<int> B = {A.begin() + L, A.begin() + R};
assert(X.prod(root, L, R) == MIN(B));
}
if (t == 3) {
// max_right
int LIM = RNG(1, 100);
auto check = [&](auto e) -> bool { return e >= LIM; };
int naive = [&]() -> int {
ll mi = unit;
FOR(i, L, N) {
chmin(mi, A[i]);
if (mi < LIM) return i;
}
return N;
}();
assert(naive == X.max_right(root, check, L));
}
}
}
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
test();
solve();
return 0;
}