This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#include "my_template.hpp"
#include "ds/binary_trie.hpp"
#include "random/base.hpp"
void test() {
const int LOG = 5;
Binary_Trie<LOG, false, 100> X;
FOR(100) {
vector<int> A;
X.reset();
auto root = X.new_root();
FOR(1000) {
int t = RNG(0, 5);
if (t == 0) { // add
int x = RNG(0, 1 << LOG);
A.eb(x);
root = X.add(root, x);
}
if (t == 1) { // get all
sort(all(A));
vc<int> B;
X.enumerate(root, [&](int k, int cnt) -> void { FOR(cnt) B.eb(k); });
assert(A == B);
}
if (t == 2 && len(A)) { // erase
int k = RNG(len(A));
int x = A[k];
swap(A[k], A.back());
A.pop_back();
X.add(root, x, -1);
}
if (t == 3 && len(A)) { // kth
int k = RNG(len(A));
int xor_val = RNG(0, 1 << LOG);
vc<int> B;
for (auto&& x: A) B.eb(x ^ xor_val);
sort(all(B));
assert(B[k] == int(X.kth(root, k, xor_val)));
}
if (t == 4) { // freq
int lo = RNG(0, 1 << LOG);
int hi = RNG(0, 1 << LOG);
int xor_val = RNG(0, 1 << LOG);
if (lo > hi) swap(lo, hi);
++hi;
int cnt = 0;
for (auto&& x: A) {
int y = x ^ xor_val;
if (lo <= y && y < hi) ++cnt;
}
assert(cnt == X.count(root, lo, hi, xor_val));
}
}
}
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
test();
solve();
return 0;
}
#line 1 "test/mytest/binary_trie.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "ds/binary_trie.hpp"
// 非永続ならば、2 * 要素数 のノード数
template <int LOG, bool PERSISTENT, int NODES, typename UINT = u64,
typename SIZE_TYPE = int>
struct Binary_Trie {
using T = SIZE_TYPE;
struct Node {
int width;
UINT val;
T cnt;
Node *l, *r;
};
Node *pool;
int pid;
using np = Node *;
Binary_Trie() : pid(0) { pool = new Node[NODES]; }
void reset() { pid = 0; }
np new_root() { return nullptr; }
np add(np root, UINT val, T cnt = 1) {
if (!root) root = new_node(0, 0);
assert(0 <= val && val < (1LL << LOG));
return add_rec(root, LOG, val, cnt);
}
// f(val, cnt)
template <typename F>
void enumerate(np root, F f) {
auto dfs = [&](auto &dfs, np root, UINT val, int ht) -> void {
if (ht == 0) {
f(val, root->cnt);
return;
}
np c = root->l;
if (c) { dfs(dfs, c, val << (c->width) | (c->val), ht - (c->width)); }
c = root->r;
if (c) { dfs(dfs, c, val << (c->width) | (c->val), ht - (c->width)); }
};
if (root) dfs(dfs, root, 0, LOG);
}
// xor_val したあとの値で昇順 k 番目
UINT kth(np root, T k, UINT xor_val) {
assert(root && 0 <= k && k < root->cnt);
return kth_rec(root, 0, k, LOG, xor_val) ^ xor_val;
}
// xor_val したあとの値で最小値
UINT min(np root, UINT xor_val) {
assert(root && root->cnt);
return kth(root, 0, xor_val);
}
// xor_val したあとの値で最大値
UINT max(np root, UINT xor_val) {
assert(root && root->cnt);
return kth(root, (root->cnt) - 1, xor_val);
}
// xor_val したあとの値で [0, upper) 内に入るものの個数
T prefix_count(np root, UINT upper, UINT xor_val) {
if (!root) return 0;
return prefix_count_rec(root, LOG, upper, xor_val, 0);
}
// xor_val したあとの値で [lo, hi) 内に入るものの個数
T count(np root, UINT lo, UINT hi, UINT xor_val) {
return prefix_count(root, hi, xor_val) - prefix_count(root, lo, xor_val);
}
private:
inline UINT mask(int k) { return (UINT(1) << k) - 1; }
np new_node(int width, UINT val) {
pool[pid].l = pool[pid].r = nullptr;
pool[pid].width = width;
pool[pid].val = val;
pool[pid].cnt = 0;
return &(pool[pid++]);
}
np copy_node(np c) {
if (!c || !PERSISTENT) return c;
np res = &(pool[pid++]);
res->width = c->width, res->val = c->val;
res->cnt = c->cnt, res->l = c->l, res->r = c->r;
return res;
}
np add_rec(np root, int ht, UINT val, T cnt) {
root = copy_node(root);
root->cnt += cnt;
if (ht == 0) return root;
bool go_r = (val >> (ht - 1)) & 1;
np c = (go_r ? root->r : root->l);
if (!c) {
c = new_node(ht, val);
c->cnt = cnt;
if (!go_r) root->l = c;
if (go_r) root->r = c;
return root;
}
int w = c->width;
if ((val >> (ht - w)) == c->val) {
c = add_rec(c, ht - w, val & mask(ht - w), cnt);
if (!go_r) root->l = c;
if (go_r) root->r = c;
return root;
}
int same = w - 1 - topbit((val >> (ht - w)) ^ (c->val));
np n = new_node(same, (c->val) >> (w - same));
n->cnt = c->cnt + cnt;
c = copy_node(c);
c->width = w - same;
c->val = c->val & mask(w - same);
if ((val >> (ht - same - 1)) & 1) {
n->l = c;
n->r = new_node(ht - same, val & mask(ht - same));
n->r->cnt = cnt;
} else {
n->r = c;
n->l = new_node(ht - same, val & mask(ht - same));
n->l->cnt = cnt;
}
if (!go_r) root->l = n;
if (go_r) root->r = n;
return root;
}
UINT kth_rec(np root, UINT val, T k, int ht, UINT xor_val) {
if (ht == 0) return val;
np left = root->l, right = root->r;
if ((xor_val >> (ht - 1)) & 1) swap(left, right);
T sl = (left ? left->cnt : 0);
np c;
if (k < sl) { c = left; }
if (k >= sl) { c = right, k -= sl; }
int w = c->width;
return kth_rec(c, val << w | (c->val), k, ht - w, xor_val);
}
T prefix_count_rec(np root, int ht, UINT LIM, UINT xor_val, UINT val) {
UINT now = (val << ht) ^ (xor_val);
if ((LIM >> ht) > (now >> ht)) return root->cnt;
if (ht == 0 || (LIM >> ht) < (now >> ht)) return 0;
T res = 0;
FOR(k, 2) {
np c = (k == 0 ? root->l : root->r);
if (c) {
int w = c->width;
res += prefix_count_rec(c, ht - w, LIM, xor_val, val << w | c->val);
}
}
return res;
}
};
#line 2 "random/base.hpp"
u64 RNG_64() {
static uint64_t x_
= uint64_t(chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count())
* 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 5 "test/mytest/binary_trie.test.cpp"
void test() {
const int LOG = 5;
Binary_Trie<LOG, false, 100> X;
FOR(100) {
vector<int> A;
X.reset();
auto root = X.new_root();
FOR(1000) {
int t = RNG(0, 5);
if (t == 0) { // add
int x = RNG(0, 1 << LOG);
A.eb(x);
root = X.add(root, x);
}
if (t == 1) { // get all
sort(all(A));
vc<int> B;
X.enumerate(root, [&](int k, int cnt) -> void { FOR(cnt) B.eb(k); });
assert(A == B);
}
if (t == 2 && len(A)) { // erase
int k = RNG(len(A));
int x = A[k];
swap(A[k], A.back());
A.pop_back();
X.add(root, x, -1);
}
if (t == 3 && len(A)) { // kth
int k = RNG(len(A));
int xor_val = RNG(0, 1 << LOG);
vc<int> B;
for (auto&& x: A) B.eb(x ^ xor_val);
sort(all(B));
assert(B[k] == int(X.kth(root, k, xor_val)));
}
if (t == 4) { // freq
int lo = RNG(0, 1 << LOG);
int hi = RNG(0, 1 << LOG);
int xor_val = RNG(0, 1 << LOG);
if (lo > hi) swap(lo, hi);
++hi;
int cnt = 0;
for (auto&& x: A) {
int y = x ^ xor_val;
if (lo <= y && y < hi) ++cnt;
}
assert(cnt == X.count(root, lo, hi, xor_val));
}
}
}
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
test();
solve();
return 0;
}