library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub maspypy/library

:heavy_check_mark: test/mytest/ARC30D.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#include "my_template.hpp"
#include "alg/acted_monoid/sum_add.hpp"
#include "ds/randomized_bst/rbst_acted_monoid.hpp"

void test_ARC30D_case1() {
  using AM = ActedMonoid_Sum_Add<ll>;
  const int MAX = 1000;

  const int N = 5;
  const int Q = 5;
  vi dat = {1, 2, 3, 4, 5};

  RBST_ActedMonoid<AM, true, MAX> RBST;
  auto root = RBST.new_node(dat);

  auto query_1 = [&](int L, int R, int x) -> void {
    root = RBST.apply(root, --L, R, x);
  };
  auto query_2 = [&](int a, int b, int c, int d) -> void {
    auto [xl, xm, xr] = RBST.split3(root, --a, b);
    auto [yl, ym, yr] = RBST.split3(root, --c, d);
    root = RBST.merge3(xl, ym, xr);
  };
  auto query_3 = [&](int L, int R, int ANS) -> void {
    assert(RBST.prod(root, --L, R) == ANS);
  };

  query_3(1, 5, 15);
  query_1(1, 3, 1);
  query_3(1, 3, 9);
  query_2(1, 3, 2, 4);
  query_3(1, 5, 20);
}

void test_ARC30D_case2() {
  using AM = ActedMonoid_Sum_Add<ll>;
  const int MAX = 1000;

  const int N = 10;
  const int Q = 30;
  vi dat = {-5, -5, -2, -1, 2, -2, 0, -4, 2, 5};

  RBST_ActedMonoid<AM, true, MAX> RBST;
  auto root = RBST.new_node(dat);

  auto query_1 = [&](int L, int R, int x) -> void {
    root = RBST.apply(root, --L, R, x);
  };
  auto query_2 = [&](int a, int b, int c, int d) -> void {
    auto [xl, xm, xr] = RBST.split3(root, --a, b);
    auto [yl, ym, yr] = RBST.split3(root, --c, d);
    root = RBST.merge3(xl, ym, xr);
  };
  auto query_3 = [&](int L, int R, int ANS) -> void {
    assert(RBST.prod(root, --L, R) == ANS);
  };

  query_2(9, 10, 9, 10);
  query_2(3, 5, 2, 4);
  query_1(2, 10, -1);
  query_2(1, 7, 1, 7);
  query_3(1, 4, -20);

  query_2(1, 6, 2, 7);
  query_2(5, 8, 6, 9);
  query_3(4, 8, -8);
  query_3(1, 10, -18);
  query_3(9, 9, 1);

  query_1(3, 8, -1);
  query_2(4, 9, 1, 6);
  query_3(2, 7, -29);
  query_1(9, 10, -4);
  query_1(6, 9, -5);

  query_1(4, 6, -7);
  query_3(2, 5, -36);
  query_2(10, 10, 7, 7);
  query_1(3, 4, -10);
  query_3(4, 9, -78);

  query_3(8, 9, -18);
  query_2(6, 7, 8, 9);
  query_3(3, 5, -50);
  query_3(3, 9, -86);
  query_1(2, 10, -10);

  query_2(4, 6, 4, 6);
  query_2(4, 9, 5, 10);
  query_1(2, 6, 7);
  query_3(7, 8, -38);
  query_1(3, 6, 3);
}

void solve() {
  int a, b;
  cin >> a >> b;
  cout << a + b << "\n";
}

signed main() {
  test_ARC30D_case1();
  test_ARC30D_case2();

  solve();

  return 0;
}
#line 1 "test/mytest/ARC30D.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}
#endif
#line 2 "alg/monoid/add.hpp"

template <typename E>
struct Monoid_Add {
  using X = E;
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
  static constexpr X inverse(const X &x) noexcept { return -x; }
  static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
  static constexpr X unit() { return X(0); }
  static constexpr bool commute = true;
};
#line 2 "alg/acted_monoid/sum_add.hpp"

template <typename E>
struct ActedMonoid_Sum_Add {
  using Monoid_X = Monoid_Add<E>;
  using Monoid_A = Monoid_Add<E>;
  using X = typename Monoid_X::value_type;
  using A = typename Monoid_A::value_type;
  static constexpr X act(const X &x, const A &a, const ll &size) {
    return x + a * E(size);
  }
};
#line 1 "ds/randomized_bst/rbst_acted_monoid.hpp"
template <typename ActedMonoid, bool PERSISTENT, int NODES>
struct RBST_ActedMonoid {
  using Monoid_X = typename ActedMonoid::Monoid_X;
  using Monoid_A = typename ActedMonoid::Monoid_A;
  using X = typename Monoid_X::value_type;
  using A = typename Monoid_A::value_type;

  struct Node {
    Node *l, *r;
    X x, prod; // lazy, rev 反映済
    A lazy;
    u32 size;
    bool rev;
  };

  Node *pool;
  int pid;
  using np = Node *;

  RBST_ActedMonoid() : pid(0) { pool = new Node[NODES]; }

  void reset() { pid = 0; }

  np new_node(const X &x) {
    pool[pid].l = pool[pid].r = nullptr;
    pool[pid].x = x;
    pool[pid].prod = x;
    pool[pid].lazy = Monoid_A::unit();
    pool[pid].size = 1;
    pool[pid].rev = 0;
    return &(pool[pid++]);
  }

  np new_node(const vc<X> &dat) {
    auto dfs = [&](auto &dfs, u32 l, u32 r) -> np {
      if (l == r) return nullptr;
      if (r == l + 1) return new_node(dat[l]);
      u32 m = (l + r) / 2;
      np l_root = dfs(dfs, l, m);
      np r_root = dfs(dfs, m + 1, r);
      np root = new_node(dat[m]);
      root->l = l_root, root->r = r_root;
      update(root);
      return root;
    };
    return dfs(dfs, 0, len(dat));
  }

  np copy_node(np &n) {
    if (!n || !PERSISTENT) return n;
    pool[pid].l = n->l, pool[pid].r = n->r;
    pool[pid].x = n->x;
    pool[pid].prod = n->prod;
    pool[pid].lazy = n->lazy;
    pool[pid].size = n->size;
    pool[pid].rev = n->rev;
    return &(pool[pid++]);
  }

  np merge(np l_root, np r_root) { return merge_rec(l_root, r_root); }
  np merge3(np a, np b, np c) { return merge(merge(a, b), c); }
  np merge4(np a, np b, np c, np d) { return merge(merge(merge(a, b), c), d); }
  pair<np, np> split(np root, u32 k) {
    if (!root) {
      assert(k == 0);
      return {nullptr, nullptr};
    }
    assert(0 <= k && k <= root->size);
    return split_rec(root, k);
  }
  tuple<np, np, np> split3(np root, u32 l, u32 r) {
    np nm, nr;
    tie(root, nr) = split(root, r);
    tie(root, nm) = split(root, l);
    return {root, nm, nr};
  }
  tuple<np, np, np, np> split4(np root, u32 i, u32 j, u32 k) {
    np d;
    tie(root, d) = split(root, k);
    auto [a, b, c] = split3(root, i, j);
    return {a, b, c, d};
  }

  X prod(np root, u32 l, u32 r) {
    if (l == r) return Monoid_X::unit();
    return prod_rec(root, l, r, false);
  }
  X prod(np root) { return (root ? root->prod : Monoid_X::unit()); }

  np reverse(np root, u32 l, u32 r) {
    assert(Monoid_X::commute);
    assert(0 <= l && l <= r && r <= root->size);
    if (r - l <= 1) return root;
    auto [nl, nm, nr] = split3(root, l, r);
    nm->rev ^= 1;
    swap(nm->l, nm->r);
    return merge3(nl, nm, nr);
  }

  np apply(np root, u32 l, u32 r, const A a) {
    assert(0 <= l && l <= r && r <= root->size);
    return apply_rec(root, l, r, a);
  }
  np apply(np root, const A a) {
    if (!root) return root;
    return apply_rec(root, 0, root->size, a);
  }

  np set(np root, u32 k, const X &x) { return set_rec(root, k, x); }
  np multiply(np root, u32 k, const X &x) { return multiply_rec(root, k, x); }
  X get(np root, u32 k) { return get_rec(root, k, false, Monoid_A::unit()); }

  vc<X> get_all(np root) {
    vc<X> res;
    auto dfs = [&](auto &dfs, np root, bool rev, A lazy) -> void {
      if (!root) return;
      X me = ActedMonoid::act(root->x, lazy, 1);
      lazy = Monoid_A::op(root->lazy, lazy);
      dfs(dfs, (rev ? root->r : root->l), rev ^ root->rev, lazy);
      res.eb(me);
      dfs(dfs, (rev ? root->l : root->r), rev ^ root->rev, lazy);
    };
    dfs(dfs, root, 0, Monoid_A::unit());
    return res;
  }

  template <typename F>
  pair<np, np> split_max_right(np root, const F check) {
    assert(check(Monoid_X::unit()));
    X x = Monoid_X::unit();
    return split_max_right_rec(root, check, x);
  }

private:
  inline u32 xor128() {
    static u32 x = 123456789;
    static u32 y = 362436069;
    static u32 z = 521288629;
    static u32 w = 88675123;
    u32 t = x ^ (x << 11);
    x = y;
    y = z;
    z = w;
    return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
  }

  void prop(np c) {
    // 自身をコピーする必要はない。
    // 子をコピーする必要がある。複数の親を持つ可能性があるため。
    bool bl_lazy = (c->lazy != Monoid_A::unit());
    bool bl_rev = c->rev;
    if (bl_lazy || bl_rev) {
      c->l = copy_node(c->l);
      c->r = copy_node(c->r);
    }
    if (c->lazy != Monoid_A::unit()) {
      if (c->l) {
        c->l->x = ActedMonoid::act(c->l->x, c->lazy, 1);
        c->l->prod = ActedMonoid::act(c->l->prod, c->lazy, c->l->size);
        c->l->lazy = Monoid_A::op(c->l->lazy, c->lazy);
      }
      if (c->r) {
        c->r->x = ActedMonoid::act(c->r->x, c->lazy, 1);
        c->r->prod = ActedMonoid::act(c->r->prod, c->lazy, c->r->size);
        c->r->lazy = Monoid_A::op(c->r->lazy, c->lazy);
      }
      c->lazy = Monoid_A::unit();
    }
    if (c->rev) {
      if (c->l) {
        c->l->rev ^= 1;
        swap(c->l->l, c->l->r);
      }
      if (c->r) {
        c->r->rev ^= 1;
        swap(c->r->l, c->r->r);
      }
      c->rev = 0;
    }
  }

  void update(np c) {
    // データを保ったまま正常化するだけなので、コピー不要
    c->size = 1;
    c->prod = c->x;
    if (c->l) {
      c->size += c->l->size;
      c->prod = Monoid_X::op(c->l->prod, c->prod);
    }
    if (c->r) {
      c->size += c->r->size;
      c->prod = Monoid_X::op(c->prod, c->r->prod);
    }
  }

  np merge_rec(np l_root, np r_root) {
    if (!l_root) return r_root;
    if (!r_root) return l_root;
    u32 sl = l_root->size, sr = r_root->size;
    if (xor128() % (sl + sr) < sl) {
      prop(l_root);
      l_root = copy_node(l_root);
      l_root->r = merge_rec(l_root->r, r_root);
      update(l_root);
      return l_root;
    }
    prop(r_root);
    r_root = copy_node(r_root);
    r_root->l = merge_rec(l_root, r_root->l);
    update(r_root);
    return r_root;
  }

  pair<np, np> split_rec(np root, u32 k) {
    if (!root) return {nullptr, nullptr};
    prop(root);
    u32 sl = (root->l ? root->l->size : 0);
    if (k <= sl) {
      auto [nl, nr] = split_rec(root->l, k);
      root = copy_node(root);
      root->l = nr;
      update(root);
      return {nl, root};
    }
    auto [nl, nr] = split_rec(root->r, k - (1 + sl));
    root = copy_node(root);
    root->r = nl;
    update(root);
    return {root, nr};
  }

  np set_rec(np root, u32 k, const X &x) {
    if (!root) return root;
    prop(root);
    u32 sl = (root->l ? root->l->size : 0);
    if (k < sl) {
      root = copy_node(root);
      root->l = set_rec(root->l, k, x);
      update(root);
      return root;
    }
    if (k == sl) {
      root = copy_node(root);
      root->x = x;
      update(root);
      return root;
    }
    root = copy_node(root);
    root->r = set_rec(root->r, k - (1 + sl), x);
    update(root);
    return root;
  }

  np multiply_rec(np root, u32 k, const X &x) {
    if (!root) return root;
    prop(root);
    u32 sl = (root->l ? root->l->size : 0);
    if (k < sl) {
      root = copy_node(root);
      root->l = multiply_rec(root->l, k, x);
      update(root);
      return root;
    }
    if (k == sl) {
      root = copy_node(root);
      root->x = Monoid_X::op(root->x, x);
      update(root);
      return root;
    }
    root = copy_node(root);
    root->r = multiply_rec(root->r, k - (1 + sl), x);
    update(root);
    return root;
  }

  X prod_rec(np root, u32 l, u32 r, bool rev) {
    if (l == 0 && r == root->size) { return root->prod; }
    np left = (rev ? root->r : root->l);
    np right = (rev ? root->l : root->r);
    u32 sl = (left ? left->size : 0);
    X res = Monoid_X::unit();
    if (l < sl) {
      X y = prod_rec(left, l, min(r, sl), rev ^ root->rev);
      res = Monoid_X::op(res, ActedMonoid::act(y, root->lazy, min(r, sl) - l));
    }
    if (l <= sl && sl < r) res = Monoid_X::op(res, root->x);
    u32 k = 1 + sl;
    if (k < r) {
      X y = prod_rec(right, max(k, l) - k, r - k, rev ^ root->rev);
      res = Monoid_X::op(res, ActedMonoid::act(y, root->lazy, r - max(k, l)));
    }
    return res;
  }

  X get_rec(np root, u32 k, bool rev, A lazy) {
    np left = (rev ? root->r : root->l);
    np right = (rev ? root->l : root->r);
    u32 sl = (left ? left->size : 0);
    if (k == sl) return ActedMonoid::act(root->x, lazy, 1);
    lazy = Monoid_A::op(root->lazy, lazy);
    rev ^= root->rev;
    if (k < sl) return get_rec(left, k, rev, lazy);
    return get_rec(right, k - (1 + sl), rev, lazy);
  }

  np apply_rec(np root, u32 l, u32 r, const A &a) {
    prop(root);
    root = copy_node(root);
    if (l == 0 && r == root->size) {
      root->x = ActedMonoid::act(root->x, a, 1);
      root->prod = ActedMonoid::act(root->prod, a, root->size);
      root->lazy = a;
      return root;
    }
    u32 sl = (root->l ? root->l->size : 0);
    if (l < sl) root->l = apply_rec(root->l, l, min(r, sl), a);
    if (l <= sl && sl < r) root->x = ActedMonoid::act(root->x, a, 1);
    u32 k = 1 + sl;
    if (k < r) root->r = apply_rec(root->r, max(k, l) - k, r - k, a);
    update(root);
    return root;
  }

  template <typename F>
  pair<np, np> split_max_right_rec(np root, F check, X &x) {
    if (!root) return {nullptr, nullptr};
    prop(root);
    root = copy_node(root);
    X y = Monoid_X::op(x, root->prod);
    if (check(y)) {
      x = y;
      return {root, nullptr};
    }
    np left = root->l, right = root->r;
    if (left) {
      X y = Monoid_X::op(x, root->l->prod);
      if (!check(y)) {
        auto [n1, n2] = split_max_right_rec(left, check, x);
        root->l = n2;
        update(root);
        return {n1, root};
      }
      x = y;
    }
    y = Monoid_X::op(x, root->x);
    if (!check(y)) {
      root->l = nullptr;
      update(root);
      return {left, root};
    }
    x = y;
    auto [n1, n2] = split_max_right_rec(right, check, x);
    root->r = n1;
    update(root);
    return {root, n2};
  }
};
#line 5 "test/mytest/ARC30D.test.cpp"

void test_ARC30D_case1() {
  using AM = ActedMonoid_Sum_Add<ll>;
  const int MAX = 1000;

  const int N = 5;
  const int Q = 5;
  vi dat = {1, 2, 3, 4, 5};

  RBST_ActedMonoid<AM, true, MAX> RBST;
  auto root = RBST.new_node(dat);

  auto query_1 = [&](int L, int R, int x) -> void {
    root = RBST.apply(root, --L, R, x);
  };
  auto query_2 = [&](int a, int b, int c, int d) -> void {
    auto [xl, xm, xr] = RBST.split3(root, --a, b);
    auto [yl, ym, yr] = RBST.split3(root, --c, d);
    root = RBST.merge3(xl, ym, xr);
  };
  auto query_3 = [&](int L, int R, int ANS) -> void {
    assert(RBST.prod(root, --L, R) == ANS);
  };

  query_3(1, 5, 15);
  query_1(1, 3, 1);
  query_3(1, 3, 9);
  query_2(1, 3, 2, 4);
  query_3(1, 5, 20);
}

void test_ARC30D_case2() {
  using AM = ActedMonoid_Sum_Add<ll>;
  const int MAX = 1000;

  const int N = 10;
  const int Q = 30;
  vi dat = {-5, -5, -2, -1, 2, -2, 0, -4, 2, 5};

  RBST_ActedMonoid<AM, true, MAX> RBST;
  auto root = RBST.new_node(dat);

  auto query_1 = [&](int L, int R, int x) -> void {
    root = RBST.apply(root, --L, R, x);
  };
  auto query_2 = [&](int a, int b, int c, int d) -> void {
    auto [xl, xm, xr] = RBST.split3(root, --a, b);
    auto [yl, ym, yr] = RBST.split3(root, --c, d);
    root = RBST.merge3(xl, ym, xr);
  };
  auto query_3 = [&](int L, int R, int ANS) -> void {
    assert(RBST.prod(root, --L, R) == ANS);
  };

  query_2(9, 10, 9, 10);
  query_2(3, 5, 2, 4);
  query_1(2, 10, -1);
  query_2(1, 7, 1, 7);
  query_3(1, 4, -20);

  query_2(1, 6, 2, 7);
  query_2(5, 8, 6, 9);
  query_3(4, 8, -8);
  query_3(1, 10, -18);
  query_3(9, 9, 1);

  query_1(3, 8, -1);
  query_2(4, 9, 1, 6);
  query_3(2, 7, -29);
  query_1(9, 10, -4);
  query_1(6, 9, -5);

  query_1(4, 6, -7);
  query_3(2, 5, -36);
  query_2(10, 10, 7, 7);
  query_1(3, 4, -10);
  query_3(4, 9, -78);

  query_3(8, 9, -18);
  query_2(6, 7, 8, 9);
  query_3(3, 5, -50);
  query_3(3, 9, -86);
  query_1(2, 10, -10);

  query_2(4, 6, 4, 6);
  query_2(4, 9, 5, 10);
  query_1(2, 6, 7);
  query_3(7, 8, -38);
  query_1(3, 6, 3);
}

void solve() {
  int a, b;
  cin >> a >> b;
  cout << a + b << "\n";
}

signed main() {
  test_ARC30D_case1();
  test_ARC30D_case2();

  solve();

  return 0;
}
Back to top page