This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#include "my_template.hpp"
#include "alg/acted_monoid/sum_add.hpp"
#include "ds/randomized_bst/rbst_acted_monoid.hpp"
void test_ARC30D_case1() {
using AM = ActedMonoid_Sum_Add<ll>;
const int MAX = 1000;
const int N = 5;
const int Q = 5;
vi dat = {1, 2, 3, 4, 5};
RBST_ActedMonoid<AM, true, MAX> RBST;
auto root = RBST.new_node(dat);
auto query_1 = [&](int L, int R, int x) -> void {
root = RBST.apply(root, --L, R, x);
};
auto query_2 = [&](int a, int b, int c, int d) -> void {
auto [xl, xm, xr] = RBST.split3(root, --a, b);
auto [yl, ym, yr] = RBST.split3(root, --c, d);
root = RBST.merge3(xl, ym, xr);
};
auto query_3 = [&](int L, int R, int ANS) -> void {
assert(RBST.prod(root, --L, R) == ANS);
};
query_3(1, 5, 15);
query_1(1, 3, 1);
query_3(1, 3, 9);
query_2(1, 3, 2, 4);
query_3(1, 5, 20);
}
void test_ARC30D_case2() {
using AM = ActedMonoid_Sum_Add<ll>;
const int MAX = 1000;
const int N = 10;
const int Q = 30;
vi dat = {-5, -5, -2, -1, 2, -2, 0, -4, 2, 5};
RBST_ActedMonoid<AM, true, MAX> RBST;
auto root = RBST.new_node(dat);
auto query_1 = [&](int L, int R, int x) -> void {
root = RBST.apply(root, --L, R, x);
};
auto query_2 = [&](int a, int b, int c, int d) -> void {
auto [xl, xm, xr] = RBST.split3(root, --a, b);
auto [yl, ym, yr] = RBST.split3(root, --c, d);
root = RBST.merge3(xl, ym, xr);
};
auto query_3 = [&](int L, int R, int ANS) -> void {
assert(RBST.prod(root, --L, R) == ANS);
};
query_2(9, 10, 9, 10);
query_2(3, 5, 2, 4);
query_1(2, 10, -1);
query_2(1, 7, 1, 7);
query_3(1, 4, -20);
query_2(1, 6, 2, 7);
query_2(5, 8, 6, 9);
query_3(4, 8, -8);
query_3(1, 10, -18);
query_3(9, 9, 1);
query_1(3, 8, -1);
query_2(4, 9, 1, 6);
query_3(2, 7, -29);
query_1(9, 10, -4);
query_1(6, 9, -5);
query_1(4, 6, -7);
query_3(2, 5, -36);
query_2(10, 10, 7, 7);
query_1(3, 4, -10);
query_3(4, 9, -78);
query_3(8, 9, -18);
query_2(6, 7, 8, 9);
query_3(3, 5, -50);
query_3(3, 9, -86);
query_1(2, 10, -10);
query_2(4, 6, 4, 6);
query_2(4, 9, 5, 10);
query_1(2, 6, 7);
query_3(7, 8, -38);
query_1(3, 6, 3);
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
test_ARC30D_case1();
test_ARC30D_case2();
solve();
return 0;
}
#line 1 "test/mytest/ARC30D.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 2 "alg/monoid/add.hpp"
template <typename X>
struct Monoid_Add {
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
static constexpr X inverse(const X &x) noexcept { return -x; }
static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
static constexpr X unit() { return X(0); }
static constexpr bool commute = true;
};
#line 2 "alg/acted_monoid/sum_add.hpp"
template <typename E>
struct ActedMonoid_Sum_Add {
using Monoid_X = Monoid_Add<E>;
using Monoid_A = Monoid_Add<E>;
using X = typename Monoid_X::value_type;
using A = typename Monoid_A::value_type;
static constexpr X act(const X &x, const A &a, const ll &size) {
return x + a * E(size);
}
};
#line 1 "ds/randomized_bst/rbst_acted_monoid.hpp"
template <typename ActedMonoid, bool PERSISTENT, int NODES>
struct RBST_ActedMonoid {
using Monoid_X = typename ActedMonoid::Monoid_X;
using Monoid_A = typename ActedMonoid::Monoid_A;
using X = typename Monoid_X::value_type;
using A = typename Monoid_A::value_type;
struct Node {
Node *l, *r;
X x, prod; // lazy, rev 反映済
A lazy;
u32 size;
bool rev;
};
Node *pool;
int pid;
using np = Node *;
RBST_ActedMonoid() : pid(0) { pool = new Node[NODES]; }
void reset() { pid = 0; }
np new_node(const X &x) {
pool[pid].l = pool[pid].r = nullptr;
pool[pid].x = x;
pool[pid].prod = x;
pool[pid].lazy = Monoid_A::unit();
pool[pid].size = 1;
pool[pid].rev = 0;
return &(pool[pid++]);
}
np new_node(const vc<X> &dat) {
auto dfs = [&](auto &dfs, u32 l, u32 r) -> np {
if (l == r) return nullptr;
if (r == l + 1) return new_node(dat[l]);
u32 m = (l + r) / 2;
np l_root = dfs(dfs, l, m);
np r_root = dfs(dfs, m + 1, r);
np root = new_node(dat[m]);
root->l = l_root, root->r = r_root;
update(root);
return root;
};
return dfs(dfs, 0, len(dat));
}
np copy_node(np &n) {
if (!n || !PERSISTENT) return n;
pool[pid].l = n->l, pool[pid].r = n->r;
pool[pid].x = n->x;
pool[pid].prod = n->prod;
pool[pid].lazy = n->lazy;
pool[pid].size = n->size;
pool[pid].rev = n->rev;
return &(pool[pid++]);
}
np merge(np l_root, np r_root) { return merge_rec(l_root, r_root); }
np merge3(np a, np b, np c) { return merge(merge(a, b), c); }
np merge4(np a, np b, np c, np d) { return merge(merge(merge(a, b), c), d); }
pair<np, np> split(np root, u32 k) {
if (!root) {
assert(k == 0);
return {nullptr, nullptr};
}
assert(0 <= k && k <= root->size);
return split_rec(root, k);
}
tuple<np, np, np> split3(np root, u32 l, u32 r) {
np nm, nr;
tie(root, nr) = split(root, r);
tie(root, nm) = split(root, l);
return {root, nm, nr};
}
tuple<np, np, np, np> split4(np root, u32 i, u32 j, u32 k) {
np d;
tie(root, d) = split(root, k);
auto [a, b, c] = split3(root, i, j);
return {a, b, c, d};
}
X prod(np root, u32 l, u32 r) {
if (l == r) return Monoid_X::unit();
return prod_rec(root, l, r, false);
}
X prod(np root) { return (root ? root->prod : Monoid_X::unit()); }
np reverse(np root, u32 l, u32 r) {
assert(Monoid_X::commute);
assert(0 <= l && l <= r && r <= root->size);
if (r - l <= 1) return root;
auto [nl, nm, nr] = split3(root, l, r);
nm->rev ^= 1;
swap(nm->l, nm->r);
return merge3(nl, nm, nr);
}
np apply(np root, u32 l, u32 r, const A a) {
assert(0 <= l && l <= r && r <= root->size);
return apply_rec(root, l, r, a);
}
np apply(np root, const A a) {
if (!root) return root;
return apply_rec(root, 0, root->size, a);
}
np set(np root, u32 k, const X &x) { return set_rec(root, k, x); }
np multiply(np root, u32 k, const X &x) { return multiply_rec(root, k, x); }
X get(np root, u32 k) { return get_rec(root, k, false, Monoid_A::unit()); }
vc<X> get_all(np root) {
vc<X> res;
auto dfs = [&](auto &dfs, np root, bool rev, A lazy) -> void {
if (!root) return;
X me = ActedMonoid::act(root->x, lazy, 1);
lazy = Monoid_A::op(root->lazy, lazy);
dfs(dfs, (rev ? root->r : root->l), rev ^ root->rev, lazy);
res.eb(me);
dfs(dfs, (rev ? root->l : root->r), rev ^ root->rev, lazy);
};
dfs(dfs, root, 0, Monoid_A::unit());
return res;
}
template <typename F>
pair<np, np> split_max_right(np root, const F check) {
assert(check(Monoid_X::unit()));
X x = Monoid_X::unit();
return split_max_right_rec(root, check, x);
}
private:
inline u32 xor128() {
static u32 x = 123456789;
static u32 y = 362436069;
static u32 z = 521288629;
static u32 w = 88675123;
u32 t = x ^ (x << 11);
x = y;
y = z;
z = w;
return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
}
void prop(np c) {
// 自身をコピーする必要はない。
// 子をコピーする必要がある。複数の親を持つ可能性があるため。
bool bl_lazy = (c->lazy != Monoid_A::unit());
bool bl_rev = c->rev;
if (bl_lazy || bl_rev) {
c->l = copy_node(c->l);
c->r = copy_node(c->r);
}
if (c->lazy != Monoid_A::unit()) {
if (c->l) {
c->l->x = ActedMonoid::act(c->l->x, c->lazy, 1);
c->l->prod = ActedMonoid::act(c->l->prod, c->lazy, c->l->size);
c->l->lazy = Monoid_A::op(c->l->lazy, c->lazy);
}
if (c->r) {
c->r->x = ActedMonoid::act(c->r->x, c->lazy, 1);
c->r->prod = ActedMonoid::act(c->r->prod, c->lazy, c->r->size);
c->r->lazy = Monoid_A::op(c->r->lazy, c->lazy);
}
c->lazy = Monoid_A::unit();
}
if (c->rev) {
if (c->l) {
c->l->rev ^= 1;
swap(c->l->l, c->l->r);
}
if (c->r) {
c->r->rev ^= 1;
swap(c->r->l, c->r->r);
}
c->rev = 0;
}
}
void update(np c) {
// データを保ったまま正常化するだけなので、コピー不要
c->size = 1;
c->prod = c->x;
if (c->l) {
c->size += c->l->size;
c->prod = Monoid_X::op(c->l->prod, c->prod);
}
if (c->r) {
c->size += c->r->size;
c->prod = Monoid_X::op(c->prod, c->r->prod);
}
}
np merge_rec(np l_root, np r_root) {
if (!l_root) return r_root;
if (!r_root) return l_root;
u32 sl = l_root->size, sr = r_root->size;
if (xor128() % (sl + sr) < sl) {
prop(l_root);
l_root = copy_node(l_root);
l_root->r = merge_rec(l_root->r, r_root);
update(l_root);
return l_root;
}
prop(r_root);
r_root = copy_node(r_root);
r_root->l = merge_rec(l_root, r_root->l);
update(r_root);
return r_root;
}
pair<np, np> split_rec(np root, u32 k) {
if (!root) return {nullptr, nullptr};
prop(root);
u32 sl = (root->l ? root->l->size : 0);
if (k <= sl) {
auto [nl, nr] = split_rec(root->l, k);
root = copy_node(root);
root->l = nr;
update(root);
return {nl, root};
}
auto [nl, nr] = split_rec(root->r, k - (1 + sl));
root = copy_node(root);
root->r = nl;
update(root);
return {root, nr};
}
np set_rec(np root, u32 k, const X &x) {
if (!root) return root;
prop(root);
u32 sl = (root->l ? root->l->size : 0);
if (k < sl) {
root = copy_node(root);
root->l = set_rec(root->l, k, x);
update(root);
return root;
}
if (k == sl) {
root = copy_node(root);
root->x = x;
update(root);
return root;
}
root = copy_node(root);
root->r = set_rec(root->r, k - (1 + sl), x);
update(root);
return root;
}
np multiply_rec(np root, u32 k, const X &x) {
if (!root) return root;
prop(root);
u32 sl = (root->l ? root->l->size : 0);
if (k < sl) {
root = copy_node(root);
root->l = multiply_rec(root->l, k, x);
update(root);
return root;
}
if (k == sl) {
root = copy_node(root);
root->x = Monoid_X::op(root->x, x);
update(root);
return root;
}
root = copy_node(root);
root->r = multiply_rec(root->r, k - (1 + sl), x);
update(root);
return root;
}
X prod_rec(np root, u32 l, u32 r, bool rev) {
if (l == 0 && r == root->size) { return root->prod; }
np left = (rev ? root->r : root->l);
np right = (rev ? root->l : root->r);
u32 sl = (left ? left->size : 0);
X res = Monoid_X::unit();
if (l < sl) {
X y = prod_rec(left, l, min(r, sl), rev ^ root->rev);
res = Monoid_X::op(res, ActedMonoid::act(y, root->lazy, min(r, sl) - l));
}
if (l <= sl && sl < r) res = Monoid_X::op(res, root->x);
u32 k = 1 + sl;
if (k < r) {
X y = prod_rec(right, max(k, l) - k, r - k, rev ^ root->rev);
res = Monoid_X::op(res, ActedMonoid::act(y, root->lazy, r - max(k, l)));
}
return res;
}
X get_rec(np root, u32 k, bool rev, A lazy) {
np left = (rev ? root->r : root->l);
np right = (rev ? root->l : root->r);
u32 sl = (left ? left->size : 0);
if (k == sl) return ActedMonoid::act(root->x, lazy, 1);
lazy = Monoid_A::op(root->lazy, lazy);
rev ^= root->rev;
if (k < sl) return get_rec(left, k, rev, lazy);
return get_rec(right, k - (1 + sl), rev, lazy);
}
np apply_rec(np root, u32 l, u32 r, const A &a) {
prop(root);
root = copy_node(root);
if (l == 0 && r == root->size) {
root->x = ActedMonoid::act(root->x, a, 1);
root->prod = ActedMonoid::act(root->prod, a, root->size);
root->lazy = a;
return root;
}
u32 sl = (root->l ? root->l->size : 0);
if (l < sl) root->l = apply_rec(root->l, l, min(r, sl), a);
if (l <= sl && sl < r) root->x = ActedMonoid::act(root->x, a, 1);
u32 k = 1 + sl;
if (k < r) root->r = apply_rec(root->r, max(k, l) - k, r - k, a);
update(root);
return root;
}
template <typename F>
pair<np, np> split_max_right_rec(np root, F check, X &x) {
if (!root) return {nullptr, nullptr};
prop(root);
root = copy_node(root);
X y = Monoid_X::op(x, root->prod);
if (check(y)) {
x = y;
return {root, nullptr};
}
np left = root->l, right = root->r;
if (left) {
X y = Monoid_X::op(x, root->l->prod);
if (!check(y)) {
auto [n1, n2] = split_max_right_rec(left, check, x);
root->l = n2;
update(root);
return {n1, root};
}
x = y;
}
y = Monoid_X::op(x, root->x);
if (!check(y)) {
root->l = nullptr;
update(root);
return {left, root};
}
x = y;
auto [n1, n2] = split_max_right_rec(right, check, x);
root->r = n1;
update(root);
return {root, n2};
}
};
#line 5 "test/mytest/ARC30D.test.cpp"
void test_ARC30D_case1() {
using AM = ActedMonoid_Sum_Add<ll>;
const int MAX = 1000;
const int N = 5;
const int Q = 5;
vi dat = {1, 2, 3, 4, 5};
RBST_ActedMonoid<AM, true, MAX> RBST;
auto root = RBST.new_node(dat);
auto query_1 = [&](int L, int R, int x) -> void {
root = RBST.apply(root, --L, R, x);
};
auto query_2 = [&](int a, int b, int c, int d) -> void {
auto [xl, xm, xr] = RBST.split3(root, --a, b);
auto [yl, ym, yr] = RBST.split3(root, --c, d);
root = RBST.merge3(xl, ym, xr);
};
auto query_3 = [&](int L, int R, int ANS) -> void {
assert(RBST.prod(root, --L, R) == ANS);
};
query_3(1, 5, 15);
query_1(1, 3, 1);
query_3(1, 3, 9);
query_2(1, 3, 2, 4);
query_3(1, 5, 20);
}
void test_ARC30D_case2() {
using AM = ActedMonoid_Sum_Add<ll>;
const int MAX = 1000;
const int N = 10;
const int Q = 30;
vi dat = {-5, -5, -2, -1, 2, -2, 0, -4, 2, 5};
RBST_ActedMonoid<AM, true, MAX> RBST;
auto root = RBST.new_node(dat);
auto query_1 = [&](int L, int R, int x) -> void {
root = RBST.apply(root, --L, R, x);
};
auto query_2 = [&](int a, int b, int c, int d) -> void {
auto [xl, xm, xr] = RBST.split3(root, --a, b);
auto [yl, ym, yr] = RBST.split3(root, --c, d);
root = RBST.merge3(xl, ym, xr);
};
auto query_3 = [&](int L, int R, int ANS) -> void {
assert(RBST.prod(root, --L, R) == ANS);
};
query_2(9, 10, 9, 10);
query_2(3, 5, 2, 4);
query_1(2, 10, -1);
query_2(1, 7, 1, 7);
query_3(1, 4, -20);
query_2(1, 6, 2, 7);
query_2(5, 8, 6, 9);
query_3(4, 8, -8);
query_3(1, 10, -18);
query_3(9, 9, 1);
query_1(3, 8, -1);
query_2(4, 9, 1, 6);
query_3(2, 7, -29);
query_1(9, 10, -4);
query_1(6, 9, -5);
query_1(4, 6, -7);
query_3(2, 5, -36);
query_2(10, 10, 7, 7);
query_1(3, 4, -10);
query_3(4, 9, -78);
query_3(8, 9, -18);
query_2(6, 7, 8, 9);
query_3(3, 5, -50);
query_3(3, 9, -86);
query_1(2, 10, -10);
query_2(4, 6, 4, 6);
query_2(4, 9, 5, 10);
query_1(2, 6, 7);
query_3(7, 8, -38);
query_1(3, 6, 3);
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
test_ARC30D_case1();
test_ARC30D_case2();
solve();
return 0;
}