This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#define PROBLEM "https://yukicoder.me/problems/no/2295" #include "my_template.hpp" #include "other/io.hpp" #include "ds/unionfind/unionfind.hpp" #include "mod/modint.hpp" #include "graph/ds/link_cut_tree.hpp" #include "graph/ds/lct_node_commutative_monoid.hpp" #include "alg/monoid/max.hpp" using Node = LCT_Node_Commutative_Monoid<Monoid_Max<int>>; using mint = modint998; void solve() { LL(N, X, Q); ll nxt = N; UnionFind uf(N + N - 1); // root ごとに、直径頂点番号 vc<pair<int, int>> dat(N + N - 1); FOR(i, N + N - 1) dat[i] = {i, i}; Link_Cut_Tree<Node> tree(2 * N - 1); vc<mint> dp(N + N - 1); auto Q1 = [&](ll a, ll b, ll val) -> void { if (uf[a] == uf[b]) return; tree.set(nxt, val); tree.link(a, nxt); tree.link(nxt, b); nxt++; a = uf[a], b = uf[b]; ll xa = uf.size(a), xb = uf.size(b); mint ans = dp[a] + dp[b] + mint(xa * xb) * mint(val); uf.merge(a, b); dp[uf[a]] = ans; }; FOR(Q) { LL(t); if (t == 1) { LL(v, val); Q1(X, v, val); } if (t == 2) { LL(u, v); if (uf[u] != uf[v]) { print(-1); } else { ll d = tree.prod_path(u, v); if (u == v) d = 0; print(d); X += d; X %= N; } } if (t == 3) { LL(v); print(dp[uf[v]]); } if (t == 4) { LL(val); X += val; X %= N; } } } signed main() { int T = 1; // INT(T); FOR(T) solve(); return 0; }
#line 1 "test/3_yukicoder/2295.test.cpp" #define PROBLEM "https://yukicoder.me/problems/no/2295" #line 1 "my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else // https://codeforces.com/blog/entry/96344 #pragma GCC optimize("Ofast,unroll-loops") // いまの CF だとこれ入れると動かない? // #pragma GCC target("avx2,popcnt") #include <bits/stdc++.h> using namespace std; using ll = long long; using u8 = uint8_t; using u16 = uint16_t; using u32 = uint32_t; using u64 = uint64_t; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'010'000'000; template <> constexpr ll infty<ll> = 2'020'000'000'000'000'000; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_sgn(int x) { return (__builtin_parity(x) & 1 ? -1 : 1); } int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); } int popcnt_sgn(ll x) { return (__builtin_parity(x) & 1 ? -1 : 1); } int popcnt_sgn(u64 x) { return (__builtin_parity(x) & 1 ? -1 : 1); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T kth_bit(int k) { return T(1) << k; } template <typename T> bool has_kth_bit(T x, int k) { return x >> k & 1; } template <typename T> T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); } template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); } template <typename T> pair<T, T> divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } template <typename T, typename... Vectors> void concat(vc<T> &first, const Vectors &... others) { vc<T> &res = first; (res.insert(res.end(), others.begin(), others.end()), ...); } #endif #line 1 "other/io.hpp" #define FASTIO #include <unistd.h> // https://judge.yosupo.jp/submission/21623 namespace fastio { static constexpr uint32_t SZ = 1 << 17; char ibuf[SZ]; char obuf[SZ]; char out[100]; // pointer of ibuf, obuf uint32_t pil = 0, pir = 0, por = 0; struct Pre { char num[10000][4]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i][j] = n % 10 | '0'; n /= 10; } } } } constexpr pre; inline void load() { memcpy(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin); pil = 0; if (pir < SZ) ibuf[pir++] = '\n'; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } void rd(char &c) { do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); } void rd(string &x) { x.clear(); char c; do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); do { x += c; if (pil == pir) load(); c = ibuf[pil++]; } while (!isspace(c)); } template <typename T> void rd_real(T &x) { string s; rd(s); x = stod(s); } template <typename T> void rd_integer(T &x) { if (pil + 100 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (c == '-') { minus = 1, c = ibuf[pil++]; } } x = 0; while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; } if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (minus) x = -x; } } void rd(int &x) { rd_integer(x); } void rd(ll &x) { rd_integer(x); } void rd(i128 &x) { rd_integer(x); } void rd(u32 &x) { rd_integer(x); } void rd(u64 &x) { rd_integer(x); } void rd(u128 &x) { rd_integer(x); } void rd(double &x) { rd_real(x); } void rd(long double &x) { rd_real(x); } void rd(f128 &x) { rd_real(x); } template <class T, class U> void rd(pair<T, U> &p) { return rd(p.first), rd(p.second); } template <size_t N = 0, typename T> void rd_tuple(T &t) { if constexpr (N < std::tuple_size<T>::value) { auto &x = std::get<N>(t); rd(x); rd_tuple<N + 1>(t); } } template <class... T> void rd(tuple<T...> &tpl) { rd_tuple(tpl); } template <size_t N = 0, typename T> void rd(array<T, N> &x) { for (auto &d: x) rd(d); } template <class T> void rd(vc<T> &x) { for (auto &d: x) rd(d); } void read() {} template <class H, class... T> void read(H &h, T &... t) { rd(h), read(t...); } void wt(const char c) { if (por == SZ) flush(); obuf[por++] = c; } void wt(const string s) { for (char c: s) wt(c); } void wt(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) wt(s[i]); } template <typename T> void wt_integer(T x) { if (por > SZ - 100) flush(); if (x < 0) { obuf[por++] = '-', x = -x; } int outi; for (outi = 96; x >= 10000; outi -= 4) { memcpy(out + outi, pre.num[x % 10000], 4); x /= 10000; } if (x >= 1000) { memcpy(obuf + por, pre.num[x], 4); por += 4; } else if (x >= 100) { memcpy(obuf + por, pre.num[x] + 1, 3); por += 3; } else if (x >= 10) { int q = (x * 103) >> 10; obuf[por] = q | '0'; obuf[por + 1] = (x - q * 10) | '0'; por += 2; } else obuf[por++] = x | '0'; memcpy(obuf + por, out + outi + 4, 96 - outi); por += 96 - outi; } template <typename T> void wt_real(T x) { ostringstream oss; oss << fixed << setprecision(15) << double(x); string s = oss.str(); wt(s); } void wt(int x) { wt_integer(x); } void wt(ll x) { wt_integer(x); } void wt(i128 x) { wt_integer(x); } void wt(u32 x) { wt_integer(x); } void wt(u64 x) { wt_integer(x); } void wt(u128 x) { wt_integer(x); } void wt(double x) { wt_real(x); } void wt(long double x) { wt_real(x); } void wt(f128 x) { wt_real(x); } template <class T, class U> void wt(const pair<T, U> val) { wt(val.first); wt(' '); wt(val.second); } template <size_t N = 0, typename T> void wt_tuple(const T t) { if constexpr (N < std::tuple_size<T>::value) { if constexpr (N > 0) { wt(' '); } const auto x = std::get<N>(t); wt(x); wt_tuple<N + 1>(t); } } template <class... T> void wt(tuple<T...> tpl) { wt_tuple(tpl); } template <class T, size_t S> void wt(const array<T, S> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } template <class T> void wt(const vector<T> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } void print() { wt('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&... tail) { wt(head); if (sizeof...(Tail)) wt(' '); print(forward<Tail>(tail)...); } // gcc expansion. called automaticall after main. void __attribute__((destructor)) _d() { flush(); } } // namespace fastio using fastio::read; using fastio::print; using fastio::flush; #if defined(LOCAL) #define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__) #define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME #define SHOW1(x) print(#x, "=", (x)), flush() #define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush() #define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush() #define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush() #define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush() #define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush() #else #define SHOW(...) #endif #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define U32(...) \ u32 __VA_ARGS__; \ read(__VA_ARGS__) #define U64(...) \ u64 __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ read(name) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } void YA(bool t = 1) { print(t ? "YA" : "TIDAK"); } void TIDAK(bool t = 1) { YES(!t); } #line 2 "ds/unionfind/unionfind.hpp" struct UnionFind { int n, n_comp; vc<int> dat; // par or (-size) UnionFind(int n = 0) { build(n); } void build(int m) { n = m, n_comp = m; dat.assign(n, -1); } void reset() { build(n); } int operator[](int x) { while (dat[x] >= 0) { int pp = dat[dat[x]]; if (pp < 0) { return dat[x]; } x = dat[x] = pp; } return x; } ll size(int x) { x = (*this)[x]; return -dat[x]; } bool merge(int x, int y) { x = (*this)[x], y = (*this)[y]; if (x == y) return false; if (-dat[x] < -dat[y]) swap(x, y); dat[x] += dat[y], dat[y] = x, n_comp--; return true; } vc<int> get_all() { vc<int> A(n); FOR(i, n) A[i] = (*this)[i]; return A; } }; #line 2 "mod/modint_common.hpp" struct has_mod_impl { template <class T> static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {}; template <typename mint> mint inv(int n) { static const int mod = mint::get_mod(); static vector<mint> dat = {0, 1}; assert(0 <= n); if (n >= mod) n %= mod; while (len(dat) <= n) { int k = len(dat); int q = (mod + k - 1) / k; dat.eb(dat[k * q - mod] * mint::raw(q)); } return dat[n]; } template <typename mint> mint fact(int n) { static const int mod = mint::get_mod(); assert(0 <= n && n < mod); static vector<mint> dat = {1, 1}; while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat))); return dat[n]; } template <typename mint> mint fact_inv(int n) { static vector<mint> dat = {1, 1}; if (n < 0) return mint(0); while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat))); return dat[n]; } template <class mint, class... Ts> mint fact_invs(Ts... xs) { return (mint(1) * ... * fact_inv<mint>(xs)); } template <typename mint, class Head, class... Tail> mint multinomial(Head &&head, Tail &&... tail) { return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...); } template <typename mint> mint C_dense(int n, int k) { assert(n >= 0); if (k < 0 || n < k) return 0; static vvc<mint> C; static int H = 0, W = 0; auto calc = [&](int i, int j) -> mint { if (i == 0) return (j == 0 ? mint(1) : mint(0)); return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0); }; if (W <= k) { FOR(i, H) { C[i].resize(k + 1); FOR(j, W, k + 1) { C[i][j] = calc(i, j); } } W = k + 1; } if (H <= n) { C.resize(n + 1); FOR(i, H, n + 1) { C[i].resize(W); FOR(j, W) { C[i][j] = calc(i, j); } } H = n + 1; } return C[n][k]; } template <typename mint, bool large = false, bool dense = false> mint C(ll n, ll k) { assert(n >= 0); if (k < 0 || n < k) return 0; if constexpr (dense) return C_dense<mint>(n, k); if constexpr (!large) return multinomial<mint>(n, k, n - k); k = min(k, n - k); mint x(1); FOR(i, k) x *= mint(n - i); return x * fact_inv<mint>(k); } template <typename mint, bool large = false> mint C_inv(ll n, ll k) { assert(n >= 0); assert(0 <= k && k <= n); if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k); return mint(1) / C<mint, 1>(n, k); } // [x^d](1-x)^{-n} template <typename mint, bool large = false, bool dense = false> mint C_negative(ll n, ll d) { assert(n >= 0); if (d < 0) return mint(0); if (n == 0) { return (d == 0 ? mint(1) : mint(0)); } return C<mint, large, dense>(n + d - 1, d); } #line 3 "mod/modint.hpp" template <int mod> struct modint { static constexpr u32 umod = u32(mod); static_assert(umod < u32(1) << 31); u32 val; static modint raw(u32 v) { modint x; x.val = v; return x; } constexpr modint() : val(0) {} constexpr modint(u32 x) : val(x % umod) {} constexpr modint(u64 x) : val(x % umod) {} constexpr modint(u128 x) : val(x % umod) {} constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){}; bool operator<(const modint &other) const { return val < other.val; } modint &operator+=(const modint &p) { if ((val += p.val) >= umod) val -= umod; return *this; } modint &operator-=(const modint &p) { if ((val += umod - p.val) >= umod) val -= umod; return *this; } modint &operator*=(const modint &p) { val = u64(val) * p.val % umod; return *this; } modint &operator/=(const modint &p) { *this *= p.inverse(); return *this; } modint operator-() const { return modint::raw(val ? mod - val : u32(0)); } modint operator+(const modint &p) const { return modint(*this) += p; } modint operator-(const modint &p) const { return modint(*this) -= p; } modint operator*(const modint &p) const { return modint(*this) *= p; } modint operator/(const modint &p) const { return modint(*this) /= p; } bool operator==(const modint &p) const { return val == p.val; } bool operator!=(const modint &p) const { return val != p.val; } modint inverse() const { int a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return modint(u); } modint pow(ll n) const { assert(n >= 0); modint ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } static constexpr int get_mod() { return mod; } // (n, r), r は 1 の 2^n 乗根 static constexpr pair<int, int> ntt_info() { if (mod == 120586241) return {20, 74066978}; if (mod == 167772161) return {25, 17}; if (mod == 469762049) return {26, 30}; if (mod == 754974721) return {24, 362}; if (mod == 880803841) return {23, 211}; if (mod == 943718401) return {22, 663003469}; if (mod == 998244353) return {23, 31}; if (mod == 1004535809) return {21, 582313106}; if (mod == 1012924417) return {21, 368093570}; return {-1, -1}; } static constexpr bool can_ntt() { return ntt_info().fi != -1; } }; #ifdef FASTIO template <int mod> void rd(modint<mod> &x) { fastio::rd(x.val); x.val %= mod; // assert(0 <= x.val && x.val < mod); } template <int mod> void wt(modint<mod> x) { fastio::wt(x.val); } #endif using modint107 = modint<1000000007>; using modint998 = modint<998244353>; #line 7 "test/3_yukicoder/2295.test.cpp" #line 1 "graph/ds/link_cut_tree.hpp" /* 各 heavy path を head が左, tail が右となるように splay tree で持つ. ユーザーが直接呼ぶ可能性があるものだけ int でも実装. LCT 外で探索するときなど,push を忘れないように注意. */ template <typename Node> struct Link_Cut_Tree { using np = Node *; int n; vc<Node> nodes; Link_Cut_Tree(int n = 0) : n(n), nodes(n) { FOR(i, n) nodes[i] = Node(i); } Node *operator[](int v) { return &nodes[v]; } // underlying tree の根 Node *get_root(Node *c) { expose(c); c->push(); while (c->l) { c = c->l; c->push(); } splay(c); return c; } // underlying tree の根 int get_root(int c) { return get_root(&nodes[c])->idx; } // parent(c)==p となるように link. void link(Node *c, Node *p) { evert(c); expose(p); p->push(); // no edge -> heavy edge assert(!(c->p)); assert(!(p->r)); c->p = p; p->r = c; p->update(); } // parent(c)==p となるように link. void link(int c, int p) { return link(&nodes[c], &nodes[p]); } void cut(Node *a, Node *b) { evert(a); expose(b); assert(!b->p); assert((b->l) == a); // heavy edge -> no edge b->l->p = nullptr; b->l = nullptr; b->update(); } void cut(int a, int b) { return cut(&nodes[a], &nodes[b]); } // c を underlying tree の根とする. // c は splay tree の根にもなる. // c は push 済になる void evert(Node *c) { expose(c); c->reverse(); c->push(); } // c を underlying tree の根とする. // c は splay tree の根にもなる. void evert(int c) { evert(&nodes[c]); } Node *lca(Node *u, Node *v) { assert(get_root(u) == get_root(v)); expose(u); return expose(v); } int lca(int u, int v) { return lca(&nodes[u], &nodes[v])->idx; } // 辺の個数 int dist(int u, int v) { evert(u), expose(v); return ((*this)[v]->size) - 1; } Node *jump(Node *u, Node *v, int k) { evert(v); expose(u); assert(0 <= k && k < (u->size)); while (1) { u->push(); int rs = (u->r ? u->r->size : 0); if (k < rs) { u = u->r; continue; } if (k == rs) { break; } k -= rs + 1; u = u->l; } splay(u); return u; } int jump(int u, int v, int k) { auto c = jump((*this)[u], (*this)[v], k); return c->idx; } // [root, c] がひとつの splay tree になるように変更する. // c が右端で splay tree の根という状態になる. // path query はこの状態で c の data を見る. // c は push 済になる virtual Node *expose(Node *c) { Node *now = c; Node *rp = nullptr; // 今まで作ったパス while (now) { splay(now); // heavy -> light, light -> heavy. if (now->r) { now->add_light(now->r); } if (rp) { now->erase_light(rp); } now->r = rp; now->update(); rp = now; now = now->p; } splay(c); return rp; } // [root, c] がひとつの splay tree になるように変更する. // c が右端で splay tree の根という状態になる. // path query はこの状態で c の data を見る. int expose(int c) { Node *x = expose(&nodes[c]); if (!x) return -1; return x->idx; } Node *get_parent(Node *x) { expose(x); x->push(); if (!x->l) return nullptr; x = x->l, x->push(); while (x->r) x = x->r, x->push(); return x; } int get_parent(int x) { Node *p = get_parent((*this)[x]); return (p ? p->idx : -1); } void set(Node *c, typename Node::VX x) { evert(c); c->set(x); } void set(int c, typename Node::VX x) { set((*this)[c], x); } typename Node::X prod_path(int a, int b) { evert(a), expose(b); return (*this)[b]->x; } // subtree 用の node を使う typename Node::X prod_subtree(int v, int root) { static_assert(Node::NODE_FOR_SUBTREE); if (v == root) { evert(root); return (*this)[root]->x; } root = jump(v, root, 1); cut(v, root); typename Node::X res = (*this)[v]->x; link(v, root); return res; } vc<int> collect_heavy_path(int v) { np c = (*this)[v]; while (!is_root(c)) c = c->p; vc<int> res; auto dfs = [&](auto &dfs, np c, bool rev) -> void { if (!rev) { if (c->l) dfs(dfs, c->l, rev ^ c->rev); res.eb(c->idx); if (c->r) dfs(dfs, c->r, rev ^ c->rev); } else { if (c->r) dfs(dfs, c->r, rev ^ c->rev); res.eb(c->idx); if (c->l) dfs(dfs, c->l, rev ^ c->rev); } }; dfs(dfs, c, false); return res; } void debug() { print("p, l, r, rev"); auto f = [&](np c) -> int { return (c ? c->idx : -1); }; FOR(i, len(nodes)) { print(i, ",", f((*this)[i]->p), f((*this)[i]->l), f((*this)[i]->r), (*this)[i]->rev); } FOR(i, len(nodes)) { np c = (*this)[i]; if (c->l) assert(c->l->p == c); if (c->r) assert(c->r->p == c); } } private: // splay tree 内で完結する操作. 特に heavy, light 構造は変わらない. // light pointer は rotate 内でケア // c は push 済になる void splay(Node *c) { c->push(); while (!is_root(c)) { Node *p = c->p; Node *pp = (p ? p->p : nullptr); if (state(p) == 0) { p->push(), c->push(); rotate(c); } elif (state(c) == state(p)) { pp->push(), p->push(), c->push(); rotate(p); rotate(c); } else { pp->push(), p->push(), c->push(); rotate(c); rotate(c); } } } // パスを表す splay tree の根になっているかどうか // underlying tree ではない bool is_root(Node *c) { return state(c) == 0; } // splay tree 内で完結する操作. 特に heavy, light 構造は変わらない. // light edge のポインタは変更されうる void rotate(Node *n) { // n を根に近づける Node *pp, *p, *c; p = n->p; pp = p->p; if (p->l == n) { c = n->r; n->r = p; p->l = c; } else { c = n->l; n->l = p; p->r = c; } p->update(), n->update(); if (pp) { if (pp->l == p) pp->l = n; elif (pp->r == p) pp->r = n; else { // light edge pointer が (pp-p) から (pp-n) に変わる pp->change_light(p, n); } } n->p = pp; p->p = n; if (c) c->p = p; } inline int state(Node *n) { if (!n->p) return 0; if (n->p->l == n) return 1; if (n->p->r == n) return -1; return 0; } }; #line 1 "graph/ds/lct_node_commutative_monoid.hpp" // SUBTREE : cluster が subtree 情報を持つ場合 template <typename Monoid, bool SUBTREE = false> struct LCT_Node_Commutative_Monoid { static_assert(Monoid::commute); static constexpr bool NODE_FOR_SUBTREE = SUBTREE; using np = LCT_Node_Commutative_Monoid *; // デフォルト np l, r, p; int idx, size; // size は heavy path の頂点数 bool rev; // 目的ごとに定義する. using MX = Monoid; using X = typename MX::value_type; using VX = X; X x, vx, mid; LCT_Node_Commutative_Monoid(int i = 0) : l(nullptr), r(nullptr), p(nullptr), idx(i), size(1), rev(0), x(MX::unit()), vx(MX::unit()), mid(MX::unit()) {} void update() { size = 1; x = vx; if constexpr (SUBTREE) x = MX::op(x, mid); if (l) { size += l->size, x = Monoid::op(l->x, x); } if (r) { size += r->size, x = Monoid::op(x, r->x); } } void push() { if (rev) { if (l) l->reverse(); if (r) r->reverse(); rev = 0; } } // data の reverse も行う void reverse() { rev ^= 1; swap(l, r); } // LCT 内で expose, update を行うのでここは変更だけ void set(VX x) { vx = x; } void add_light(np c) { if constexpr (SUBTREE) mid = MX::op(mid, c->x); } void erase_light(np c) { if constexpr (SUBTREE) mid = MX::op(mid, MX::inverse(c->x)); } // b->x に subtree value が入っている. void change_light(np a, np b) {} }; #line 2 "alg/monoid/max.hpp" template <typename E> struct Monoid_Max { using X = E; using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return max(x, y); } static constexpr X unit() { return -infty<E>; } static constexpr bool commute = true; }; #line 11 "test/3_yukicoder/2295.test.cpp" using Node = LCT_Node_Commutative_Monoid<Monoid_Max<int>>; using mint = modint998; void solve() { LL(N, X, Q); ll nxt = N; UnionFind uf(N + N - 1); // root ごとに、直径頂点番号 vc<pair<int, int>> dat(N + N - 1); FOR(i, N + N - 1) dat[i] = {i, i}; Link_Cut_Tree<Node> tree(2 * N - 1); vc<mint> dp(N + N - 1); auto Q1 = [&](ll a, ll b, ll val) -> void { if (uf[a] == uf[b]) return; tree.set(nxt, val); tree.link(a, nxt); tree.link(nxt, b); nxt++; a = uf[a], b = uf[b]; ll xa = uf.size(a), xb = uf.size(b); mint ans = dp[a] + dp[b] + mint(xa * xb) * mint(val); uf.merge(a, b); dp[uf[a]] = ans; }; FOR(Q) { LL(t); if (t == 1) { LL(v, val); Q1(X, v, val); } if (t == 2) { LL(u, v); if (uf[u] != uf[v]) { print(-1); } else { ll d = tree.prod_path(u, v); if (u == v) d = 0; print(d); X += d; X %= N; } } if (t == 3) { LL(v); print(dp[uf[v]]); } if (t == 4) { LL(val); X += val; X %= N; } } } signed main() { int T = 1; // INT(T); FOR(T) solve(); return 0; }