This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#define PROBLEM "https://yukicoder.me/problems/no/1397" #include "my_template.hpp" #include "other/io.hpp" #include "other/connected_dp.hpp" #include "mod/modint.hpp" using mint = modint998; void solve() { LL(W, H, N); if (N % 2 != 0) return print(0); auto [states, edges] = connected_dp_squares::polygon_dp_graph(H); const int S = len(states); const int E = len(edges); vc<int> count_line(E); FOR(e, E) { auto& now = states[edges[e].fi]; auto& nxt = states[edges[e].se]; vc<bool> A(H + 1), B(H + 1); FOR(i, -1, H) { int j = i + 1; bool a1 = (i == -1 ? 0 : now[i] != -1); bool a2 = (j == H ? 0 : now[j] != -1); A[j] = a1 != a2; bool b1 = (i == -1 ? 0 : nxt[i] != -1); bool b2 = (j == H ? 0 : nxt[j] != -1); B[j] = b1 != b2; } int x = 0; FOR(i, H + 1) if (!A[i] && B[i])++ x; count_line[e] = x; } // print(S, E); // state, horizonal edges vv(mint, dp, S, N / 2 + 1); dp[0][0] = 1; FOR(W + 1) { vv(mint, newdp, S, N / 2 + 1); FOR(e, E) { auto [a, b] = edges[e]; int k = count_line[e]; FOR(n, N / 2 - k + 1) newdp[b][n + k] += dp[a][n]; } swap(dp, newdp); } print(dp[1][N / 2]); } signed main() { cout << fixed << setprecision(15); ll T = 1; // LL(T); FOR(T) solve(); return 0; }
#line 1 "test/3_yukicoder/1397.test.cpp" #define PROBLEM "https://yukicoder.me/problems/no/1397" #line 1 "my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else // https://codeforces.com/blog/entry/96344 #pragma GCC optimize("Ofast,unroll-loops") // いまの CF だとこれ入れると動かない? // #pragma GCC target("avx2,popcnt") #include <bits/stdc++.h> using namespace std; using ll = long long; using u8 = uint8_t; using u16 = uint16_t; using u32 = uint32_t; using u64 = uint64_t; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'010'000'000; template <> constexpr ll infty<ll> = 2'020'000'000'000'000'000; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_mod_2(int x) { return __builtin_parity(x); } int popcnt_mod_2(u32 x) { return __builtin_parity(x); } int popcnt_mod_2(ll x) { return __builtin_parityll(x); } int popcnt_mod_2(u64 x) { return __builtin_parityll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); } template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); } template <typename T> pair<T, T> divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } template <typename T, typename... Vectors> void concat(vc<T> &first, const Vectors &... others) { vc<T> &res = first; (res.insert(res.end(), others.begin(), others.end()), ...); } #endif #line 1 "other/io.hpp" #define FASTIO #include <unistd.h> // https://judge.yosupo.jp/submission/21623 namespace fastio { static constexpr uint32_t SZ = 1 << 17; char ibuf[SZ]; char obuf[SZ]; char out[100]; // pointer of ibuf, obuf uint32_t pil = 0, pir = 0, por = 0; struct Pre { char num[10000][4]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i][j] = n % 10 | '0'; n /= 10; } } } } constexpr pre; inline void load() { memcpy(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin); pil = 0; if (pir < SZ) ibuf[pir++] = '\n'; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } void rd(char &c) { do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); } void rd(string &x) { x.clear(); char c; do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); do { x += c; if (pil == pir) load(); c = ibuf[pil++]; } while (!isspace(c)); } template <typename T> void rd_real(T &x) { string s; rd(s); x = stod(s); } template <typename T> void rd_integer(T &x) { if (pil + 100 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (c == '-') { minus = 1, c = ibuf[pil++]; } } x = 0; while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; } if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (minus) x = -x; } } void rd(int &x) { rd_integer(x); } void rd(ll &x) { rd_integer(x); } void rd(i128 &x) { rd_integer(x); } void rd(u32 &x) { rd_integer(x); } void rd(u64 &x) { rd_integer(x); } void rd(u128 &x) { rd_integer(x); } void rd(double &x) { rd_real(x); } void rd(long double &x) { rd_real(x); } void rd(f128 &x) { rd_real(x); } template <class T, class U> void rd(pair<T, U> &p) { return rd(p.first), rd(p.second); } template <size_t N = 0, typename T> void rd_tuple(T &t) { if constexpr (N < std::tuple_size<T>::value) { auto &x = std::get<N>(t); rd(x); rd_tuple<N + 1>(t); } } template <class... T> void rd(tuple<T...> &tpl) { rd_tuple(tpl); } template <size_t N = 0, typename T> void rd(array<T, N> &x) { for (auto &d: x) rd(d); } template <class T> void rd(vc<T> &x) { for (auto &d: x) rd(d); } void read() {} template <class H, class... T> void read(H &h, T &... t) { rd(h), read(t...); } void wt(const char c) { if (por == SZ) flush(); obuf[por++] = c; } void wt(const string s) { for (char c: s) wt(c); } void wt(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) wt(s[i]); } template <typename T> void wt_integer(T x) { if (por > SZ - 100) flush(); if (x < 0) { obuf[por++] = '-', x = -x; } int outi; for (outi = 96; x >= 10000; outi -= 4) { memcpy(out + outi, pre.num[x % 10000], 4); x /= 10000; } if (x >= 1000) { memcpy(obuf + por, pre.num[x], 4); por += 4; } else if (x >= 100) { memcpy(obuf + por, pre.num[x] + 1, 3); por += 3; } else if (x >= 10) { int q = (x * 103) >> 10; obuf[por] = q | '0'; obuf[por + 1] = (x - q * 10) | '0'; por += 2; } else obuf[por++] = x | '0'; memcpy(obuf + por, out + outi + 4, 96 - outi); por += 96 - outi; } template <typename T> void wt_real(T x) { ostringstream oss; oss << fixed << setprecision(15) << double(x); string s = oss.str(); wt(s); } void wt(int x) { wt_integer(x); } void wt(ll x) { wt_integer(x); } void wt(i128 x) { wt_integer(x); } void wt(u32 x) { wt_integer(x); } void wt(u64 x) { wt_integer(x); } void wt(u128 x) { wt_integer(x); } void wt(double x) { wt_real(x); } void wt(long double x) { wt_real(x); } void wt(f128 x) { wt_real(x); } template <class T, class U> void wt(const pair<T, U> val) { wt(val.first); wt(' '); wt(val.second); } template <size_t N = 0, typename T> void wt_tuple(const T t) { if constexpr (N < std::tuple_size<T>::value) { if constexpr (N > 0) { wt(' '); } const auto x = std::get<N>(t); wt(x); wt_tuple<N + 1>(t); } } template <class... T> void wt(tuple<T...> tpl) { wt_tuple(tpl); } template <class T, size_t S> void wt(const array<T, S> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } template <class T> void wt(const vector<T> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } void print() { wt('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&... tail) { wt(head); if (sizeof...(Tail)) wt(' '); print(forward<Tail>(tail)...); } // gcc expansion. called automaticall after main. void __attribute__((destructor)) _d() { flush(); } } // namespace fastio using fastio::read; using fastio::print; using fastio::flush; #if defined(LOCAL) #define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__) #define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME #define SHOW1(x) print(#x, "=", (x)), flush() #define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush() #define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush() #define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush() #define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush() #define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush() #else #define SHOW(...) #endif #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define U32(...) \ u32 __VA_ARGS__; \ read(__VA_ARGS__) #define U64(...) \ u64 __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ read(name) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 2 "ds/hashmap.hpp" // u64 -> Val template <typename Val> struct HashMap { // n は入れたいものの個数で ok HashMap(u32 n = 0) { build(n); } void build(u32 n) { u32 k = 8; while (k < n * 2) k *= 2; cap = k / 2, mask = k - 1; key.resize(k), val.resize(k), used.assign(k, 0); } // size を保ったまま. size=0 にするときは build すること. void clear() { used.assign(len(used), 0); cap = (mask + 1) / 2; } int size() { return len(used) / 2 - cap; } int index(const u64& k) { int i = 0; for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {} return i; } Val& operator[](const u64& k) { if (cap == 0) extend(); int i = index(k); if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; } return val[i]; } Val get(const u64& k, Val default_value) { int i = index(k); return (used[i] ? val[i] : default_value); } bool count(const u64& k) { int i = index(k); return used[i] && key[i] == k; } // f(key, val) template <typename F> void enumerate_all(F f) { FOR(i, len(used)) if (used[i]) f(key[i], val[i]); } private: u32 cap, mask; vc<u64> key; vc<Val> val; vc<bool> used; u64 hash(u64 x) { static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count(); x += FIXED_RANDOM; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return (x ^ (x >> 31)) & mask; } void extend() { vc<pair<u64, Val>> dat; dat.reserve(len(used) / 2 - cap); FOR(i, len(used)) { if (used[i]) dat.eb(key[i], val[i]); } build(2 * len(dat)); for (auto& [a, b]: dat) (*this)[a] = b; } }; #line 2 "random/hash_vector.hpp" #line 2 "random/base.hpp" u64 RNG_64() { static uint64_t x_ = uint64_t(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL; x_ ^= x_ << 7; return x_ ^= x_ >> 9; } u64 RNG(u64 lim) { return RNG_64() % lim; } ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); } #line 2 "mod/modint61.hpp" struct modint61 { static constexpr u64 mod = (1ULL << 61) - 1; u64 val; constexpr modint61() : val(0ULL) {} constexpr modint61(u32 x) : val(x) {} constexpr modint61(u64 x) : val(x % mod) {} constexpr modint61(int x) : val((x < 0) ? (x + static_cast<ll>(mod)) : x) {} constexpr modint61(ll x) : val(((x %= static_cast<ll>(mod)) < 0) ? (x + static_cast<ll>(mod)) : x) {} static constexpr u64 get_mod() { return mod; } modint61 &operator+=(const modint61 &a) { val = ((val += a.val) >= mod) ? (val - mod) : val; return *this; } modint61 &operator-=(const modint61 &a) { val = ((val -= a.val) >= mod) ? (val + mod) : val; return *this; } modint61 &operator*=(const modint61 &a) { const unsigned __int128 y = static_cast<unsigned __int128>(val) * a.val; val = (y >> 61) + (y & mod); val = (val >= mod) ? (val - mod) : val; return *this; } modint61 operator-() const { return modint61(val ? mod - val : u64(0)); } modint61 &operator/=(const modint61 &a) { return (*this *= a.inverse()); } modint61 operator+(const modint61 &p) const { return modint61(*this) += p; } modint61 operator-(const modint61 &p) const { return modint61(*this) -= p; } modint61 operator*(const modint61 &p) const { return modint61(*this) *= p; } modint61 operator/(const modint61 &p) const { return modint61(*this) /= p; } bool operator<(const modint61 &other) const { return val < other.val; } bool operator==(const modint61 &p) const { return val == p.val; } bool operator!=(const modint61 &p) const { return val != p.val; } modint61 inverse() const { ll a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return modint61(u); } modint61 pow(ll n) const { assert(n >= 0); modint61 ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul, n >>= 1; } return ret; } }; #ifdef FASTIO void rd(modint61 &x) { fastio::rd(x.val); assert(0 <= x.val && x.val < modint61::mod); } void wt(modint61 x) { fastio::wt(x.val); } #endif #line 5 "random/hash_vector.hpp" template <typename T> u64 hash_vector(vc<T> X) { using mint = modint61; static vc<mint> hash_base; int n = len(X); while (len(hash_base) <= n) { hash_base.eb(RNG(mint::get_mod())); } mint H = 0; FOR(i, n) H += hash_base[i] * mint(X[i]); H += hash_base[n]; return H.val; } #line 3 "other/connected_dp.hpp" // dot case: https://atcoder.jp/contests/ttpc2023/submissions/57905985 namespace connected_dp_squares { // pair<新しい状態、今の成分 → 新しい成分> vc<pair<vc<int>, vc<int>>> next_states(const vc<int>& now) { int N = len(now); vc<pair<vc<int>, vc<int>>> res; FOR(s, 1 << N) { vc<int> par(N + N); FOR(i, N) par[i] = (s & 1 << i ? i : -1); FOR(i, N) par[N + i] = (now[i] == -1 ? -1 : now[i] + N); auto find = [&](int x) -> int { while (par[x] != x) { x = par[x] = par[par[x]]; } return x; }; auto merge = [&](int a, int b) -> void { a = find(a), b = find(b); if (a == b) return; if (a > b) swap(a, b); par[b] = a; }; FOR(i, N - 1) if (par[i] != -1 && par[i + 1] != -1) merge(i, i + 1); FOR(i, N) if (par[i] != -1 && par[N + i] != -1) merge(i, N + i); FOR(i, N + N) if (par[i] != -1) par[i] = find(i); FOR(i, N, N + N) if (par[i] >= N) par[i] = -1; res.eb(vc<int>(par.begin(), par.begin() + N), vc<int>(par.begin() + N, par.end())); } return res; } vc<int> reverse_state(const vc<int>& now) { int N = len(now); vc<int> max_i(N, -1); FOR(i, N) if (now[i] != -1) max_i[now[i]] = i; vc<int> rev(N, -1); FOR(i, N) { if (now[i] == -1) continue; int x = max_i[now[i]]; rev[N - 1 - i] = N - 1 - x; } return rev; } // 0, 1 :空の列、領域の手前、後ろ // 連結領域をひとつ作る。 // 状態:-1 が選んでいない。0,1,2,3 等は同じ成分には同じ値が入る。 // [states, edges] pair<vvc<int>, vc<pair<int, int>>> connedted_dp_graph(int N, bool merge_reverse) { HashMap<int> MP; vvc<int> states; vc<pair<int, int>> edges; states.eb(vc<int>(N, -1)); states.eb(vc<int>(N, -1)); MP[hash_vector<int>(states[0])] = 0; int p = -1; while (1) { if (++p == len(states)) break; if (p == 1) { edges.eb(1, 1); continue; } vc<int> now = states[p]; for (auto&& [nxt, convert]: next_states(now)) { // 今の成分数、消える成分数 int a = 0, b = 0; FOR(v, N) if (now[v] == v) { ++a; if (convert[v] == -1) ++b; } // 消える成分があってよいのは、終状態にいくときのみ if (b >= 2) continue; if (b == 1) { if (MAX(nxt) != -1) continue; edges.eb(p, 1); continue; } u64 h = hash_vector<int>(nxt); if (merge_reverse) { chmin(h, hash_vector<int>(reverse_state(nxt))); } if (!MP.count(h)) { MP[h] = len(states), states.eb(nxt); } edges.eb(p, MP[h]); } } return {states, edges}; } // 0, 1 :空の列、領域の手前、後ろ // 多角形(空洞なし)をひとつ作る。 // 状態:-1 が選んでいない。0,1,2,3 等は同じ成分には同じ値が入る。 // [states, edges] pair<vvc<int>, vc<pair<int, int>>> polygon_dp_graph(int N) { HashMap<int> MP; vvc<int> states; vc<pair<int, int>> edges; states.eb(vc<int>(N, -1)); states.eb(vc<int>(N, -1)); MP[hash_vector<int>(states[0])] = 0; int p = -1; while (1) { if (++p == len(states)) break; if (p == 1) { edges.eb(1, 1); continue; } vc<int> now = states[p]; for (auto&& [nxt, convert]: next_states(now)) { // 今の成分数、消える成分数 int a = 0, b = 0; FOR(v, N) if (now[v] == v) { ++a; if (convert[v] == -1) ++b; } // 消える成分があってよいのは、終状態にいくときのみ if (b >= 2) continue; if (b == 1) { if (MAX(nxt) != -1) continue; edges.eb(p, 1); continue; } bool ok = [&](vc<int>& now, vc<int>& nxt, vc<int>& convert) -> bool { // 頂点のみで接するのはダメ FOR(i, N - 1) { bool a1 = now[i] != -1, a2 = now[i + 1] != -1; bool b1 = nxt[i] != -1, b2 = nxt[i + 1] != -1; if (a1 && !a2 && !b1 && b2) return false; if (!a1 && a2 && b1 && !b2) return false; } // empty region を閉じることと、異なる連結成分がマージされることが同値 int close = 0; int after = 0; vc<bool> is_new(N, 1); FOR(i, N) if (convert[i] != -1) is_new[convert[i]] = 0; FOR(i, N) if (nxt[i] == i && !is_new[i])++ after; vc<int> I; FOR(i, N) if (now[i] != -1) I.eb(i); FOR(k, len(I) - 1) { int i = I[k], j = I[k + 1]; if (j == i + 1) continue; bool cl = 1; FOR(p, i + 1, j) if (nxt[p] == -1) cl = 0; if (cl) close++; } return a - close == after; }(now, nxt, convert); if (!ok) continue; u64 h = hash_vector<int>(nxt); if (!MP.count(h)) { MP[h] = len(states); states.eb(nxt); } edges.eb(p, MP[h]); } } return {states, edges}; } } // namespace connected_dp_squares #line 2 "mod/modint_common.hpp" struct has_mod_impl { template <class T> static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {}; template <typename mint> mint inv(int n) { static const int mod = mint::get_mod(); static vector<mint> dat = {0, 1}; assert(0 <= n); if (n >= mod) n %= mod; while (len(dat) <= n) { int k = len(dat); int q = (mod + k - 1) / k; dat.eb(dat[k * q - mod] * mint::raw(q)); } return dat[n]; } template <typename mint> mint fact(int n) { static const int mod = mint::get_mod(); assert(0 <= n && n < mod); static vector<mint> dat = {1, 1}; while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat))); return dat[n]; } template <typename mint> mint fact_inv(int n) { static vector<mint> dat = {1, 1}; if (n < 0) return mint(0); while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat))); return dat[n]; } template <class mint, class... Ts> mint fact_invs(Ts... xs) { return (mint(1) * ... * fact_inv<mint>(xs)); } template <typename mint, class Head, class... Tail> mint multinomial(Head &&head, Tail &&... tail) { return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...); } template <typename mint> mint C_dense(int n, int k) { static vvc<mint> C; static int H = 0, W = 0; auto calc = [&](int i, int j) -> mint { if (i == 0) return (j == 0 ? mint(1) : mint(0)); return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0); }; if (W <= k) { FOR(i, H) { C[i].resize(k + 1); FOR(j, W, k + 1) { C[i][j] = calc(i, j); } } W = k + 1; } if (H <= n) { C.resize(n + 1); FOR(i, H, n + 1) { C[i].resize(W); FOR(j, W) { C[i][j] = calc(i, j); } } H = n + 1; } return C[n][k]; } template <typename mint, bool large = false, bool dense = false> mint C(ll n, ll k) { assert(n >= 0); if (k < 0 || n < k) return 0; if constexpr (dense) return C_dense<mint>(n, k); if constexpr (!large) return multinomial<mint>(n, k, n - k); k = min(k, n - k); mint x(1); FOR(i, k) x *= mint(n - i); return x * fact_inv<mint>(k); } template <typename mint, bool large = false> mint C_inv(ll n, ll k) { assert(n >= 0); assert(0 <= k && k <= n); if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k); return mint(1) / C<mint, 1>(n, k); } // [x^d](1-x)^{-n} template <typename mint, bool large = false, bool dense = false> mint C_negative(ll n, ll d) { assert(n >= 0); if (d < 0) return mint(0); if (n == 0) { return (d == 0 ? mint(1) : mint(0)); } return C<mint, large, dense>(n + d - 1, d); } #line 3 "mod/modint.hpp" template <int mod> struct modint { static constexpr u32 umod = u32(mod); static_assert(umod < u32(1) << 31); u32 val; static modint raw(u32 v) { modint x; x.val = v; return x; } constexpr modint() : val(0) {} constexpr modint(u32 x) : val(x % umod) {} constexpr modint(u64 x) : val(x % umod) {} constexpr modint(u128 x) : val(x % umod) {} constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){}; bool operator<(const modint &other) const { return val < other.val; } modint &operator+=(const modint &p) { if ((val += p.val) >= umod) val -= umod; return *this; } modint &operator-=(const modint &p) { if ((val += umod - p.val) >= umod) val -= umod; return *this; } modint &operator*=(const modint &p) { val = u64(val) * p.val % umod; return *this; } modint &operator/=(const modint &p) { *this *= p.inverse(); return *this; } modint operator-() const { return modint::raw(val ? mod - val : u32(0)); } modint operator+(const modint &p) const { return modint(*this) += p; } modint operator-(const modint &p) const { return modint(*this) -= p; } modint operator*(const modint &p) const { return modint(*this) *= p; } modint operator/(const modint &p) const { return modint(*this) /= p; } bool operator==(const modint &p) const { return val == p.val; } bool operator!=(const modint &p) const { return val != p.val; } modint inverse() const { int a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return modint(u); } modint pow(ll n) const { assert(n >= 0); modint ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } static constexpr int get_mod() { return mod; } // (n, r), r は 1 の 2^n 乗根 static constexpr pair<int, int> ntt_info() { if (mod == 120586241) return {20, 74066978}; if (mod == 167772161) return {25, 17}; if (mod == 469762049) return {26, 30}; if (mod == 754974721) return {24, 362}; if (mod == 880803841) return {23, 211}; if (mod == 943718401) return {22, 663003469}; if (mod == 998244353) return {23, 31}; if (mod == 1004535809) return {21, 836905998}; if (mod == 1045430273) return {20, 363}; if (mod == 1051721729) return {20, 330}; if (mod == 1053818881) return {20, 2789}; return {-1, -1}; } static constexpr bool can_ntt() { return ntt_info().fi != -1; } }; #ifdef FASTIO template <int mod> void rd(modint<mod> &x) { fastio::rd(x.val); x.val %= mod; // assert(0 <= x.val && x.val < mod); } template <int mod> void wt(modint<mod> x) { fastio::wt(x.val); } #endif using modint107 = modint<1000000007>; using modint998 = modint<998244353>; #line 6 "test/3_yukicoder/1397.test.cpp" using mint = modint998; void solve() { LL(W, H, N); if (N % 2 != 0) return print(0); auto [states, edges] = connected_dp_squares::polygon_dp_graph(H); const int S = len(states); const int E = len(edges); vc<int> count_line(E); FOR(e, E) { auto& now = states[edges[e].fi]; auto& nxt = states[edges[e].se]; vc<bool> A(H + 1), B(H + 1); FOR(i, -1, H) { int j = i + 1; bool a1 = (i == -1 ? 0 : now[i] != -1); bool a2 = (j == H ? 0 : now[j] != -1); A[j] = a1 != a2; bool b1 = (i == -1 ? 0 : nxt[i] != -1); bool b2 = (j == H ? 0 : nxt[j] != -1); B[j] = b1 != b2; } int x = 0; FOR(i, H + 1) if (!A[i] && B[i])++ x; count_line[e] = x; } // print(S, E); // state, horizonal edges vv(mint, dp, S, N / 2 + 1); dp[0][0] = 1; FOR(W + 1) { vv(mint, newdp, S, N / 2 + 1); FOR(e, E) { auto [a, b] = edges[e]; int k = count_line[e]; FOR(n, N / 2 - k + 1) newdp[b][n + k] += dp[a][n]; } swap(dp, newdp); } print(dp[1][N / 2]); } signed main() { cout << fixed << setprecision(15); ll T = 1; // LL(T); FOR(T) solve(); return 0; }