This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#define PROBLEM "https://judge.yosupo.jp/problem/dynamic_sequence_range_affine_range_sum" #include "my_template.hpp" #include "other/io.hpp" #include "alg/acted_monoid/sum_affine.hpp" #include "mod/modint.hpp" #include "ds/randomized_bst/rbst_acted_monoid.hpp" using mint = modint998; void solve() { LL(N, Q); VEC(mint, A, N); RBST_ActedMonoid<ActedMonoid_Sum_Affine<mint>, false> X(N + Q); auto root = X.new_node(A); FOR(Q) { LL(t); if (t == 0) { LL(i, x); auto [a, b] = X.split(root, i); root = X.merge3(a, X.new_node(mint(x)), b); } if (t == 1) { LL(i); auto [a, b, c] = X.split3(root, i, i + 1); root = X.merge(a, c); } if (t == 2) { LL(l, r); root = X.reverse(root, l, r); } if (t == 3) { LL(l, r, b, c); root = X.apply(root, l, r, {mint(b), mint(c)}); } if (t == 4) { LL(l, r); print(X.prod(root, l, r)); } } } signed main() { solve(); return 0; }
#line 1 "test/2_library_checker/data_structure/dynamic_sequence_range_affine_range_sum_rbst.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/dynamic_sequence_range_affine_range_sum" #line 1 "my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else // https://codeforces.com/blog/entry/96344 #pragma GCC optimize("Ofast,unroll-loops") // いまの CF だとこれ入れると動かない? // #pragma GCC target("avx2,popcnt") #include <bits/stdc++.h> using namespace std; using ll = long long; using u8 = uint8_t; using u16 = uint16_t; using u32 = uint32_t; using u64 = uint64_t; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'010'000'000; template <> constexpr ll infty<ll> = 2'020'000'000'000'000'000; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_mod_2(int x) { return __builtin_parity(x); } int popcnt_mod_2(u32 x) { return __builtin_parity(x); } int popcnt_mod_2(ll x) { return __builtin_parityll(x); } int popcnt_mod_2(u64 x) { return __builtin_parityll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); } template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); } template <typename T> pair<T, T> divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } template <typename T, typename... Vectors> void concat(vc<T> &first, const Vectors &... others) { vc<T> &res = first; (res.insert(res.end(), others.begin(), others.end()), ...); } #endif #line 1 "other/io.hpp" #define FASTIO #include <unistd.h> // https://judge.yosupo.jp/submission/21623 namespace fastio { static constexpr uint32_t SZ = 1 << 17; char ibuf[SZ]; char obuf[SZ]; char out[100]; // pointer of ibuf, obuf uint32_t pil = 0, pir = 0, por = 0; struct Pre { char num[10000][4]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i][j] = n % 10 | '0'; n /= 10; } } } } constexpr pre; inline void load() { memcpy(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin); pil = 0; if (pir < SZ) ibuf[pir++] = '\n'; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } void rd(char &c) { do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); } void rd(string &x) { x.clear(); char c; do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); do { x += c; if (pil == pir) load(); c = ibuf[pil++]; } while (!isspace(c)); } template <typename T> void rd_real(T &x) { string s; rd(s); x = stod(s); } template <typename T> void rd_integer(T &x) { if (pil + 100 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (c == '-') { minus = 1, c = ibuf[pil++]; } } x = 0; while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; } if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (minus) x = -x; } } void rd(int &x) { rd_integer(x); } void rd(ll &x) { rd_integer(x); } void rd(i128 &x) { rd_integer(x); } void rd(u32 &x) { rd_integer(x); } void rd(u64 &x) { rd_integer(x); } void rd(u128 &x) { rd_integer(x); } void rd(double &x) { rd_real(x); } void rd(long double &x) { rd_real(x); } void rd(f128 &x) { rd_real(x); } template <class T, class U> void rd(pair<T, U> &p) { return rd(p.first), rd(p.second); } template <size_t N = 0, typename T> void rd_tuple(T &t) { if constexpr (N < std::tuple_size<T>::value) { auto &x = std::get<N>(t); rd(x); rd_tuple<N + 1>(t); } } template <class... T> void rd(tuple<T...> &tpl) { rd_tuple(tpl); } template <size_t N = 0, typename T> void rd(array<T, N> &x) { for (auto &d: x) rd(d); } template <class T> void rd(vc<T> &x) { for (auto &d: x) rd(d); } void read() {} template <class H, class... T> void read(H &h, T &... t) { rd(h), read(t...); } void wt(const char c) { if (por == SZ) flush(); obuf[por++] = c; } void wt(const string s) { for (char c: s) wt(c); } void wt(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) wt(s[i]); } template <typename T> void wt_integer(T x) { if (por > SZ - 100) flush(); if (x < 0) { obuf[por++] = '-', x = -x; } int outi; for (outi = 96; x >= 10000; outi -= 4) { memcpy(out + outi, pre.num[x % 10000], 4); x /= 10000; } if (x >= 1000) { memcpy(obuf + por, pre.num[x], 4); por += 4; } else if (x >= 100) { memcpy(obuf + por, pre.num[x] + 1, 3); por += 3; } else if (x >= 10) { int q = (x * 103) >> 10; obuf[por] = q | '0'; obuf[por + 1] = (x - q * 10) | '0'; por += 2; } else obuf[por++] = x | '0'; memcpy(obuf + por, out + outi + 4, 96 - outi); por += 96 - outi; } template <typename T> void wt_real(T x) { ostringstream oss; oss << fixed << setprecision(15) << double(x); string s = oss.str(); wt(s); } void wt(int x) { wt_integer(x); } void wt(ll x) { wt_integer(x); } void wt(i128 x) { wt_integer(x); } void wt(u32 x) { wt_integer(x); } void wt(u64 x) { wt_integer(x); } void wt(u128 x) { wt_integer(x); } void wt(double x) { wt_real(x); } void wt(long double x) { wt_real(x); } void wt(f128 x) { wt_real(x); } template <class T, class U> void wt(const pair<T, U> val) { wt(val.first); wt(' '); wt(val.second); } template <size_t N = 0, typename T> void wt_tuple(const T t) { if constexpr (N < std::tuple_size<T>::value) { if constexpr (N > 0) { wt(' '); } const auto x = std::get<N>(t); wt(x); wt_tuple<N + 1>(t); } } template <class... T> void wt(tuple<T...> tpl) { wt_tuple(tpl); } template <class T, size_t S> void wt(const array<T, S> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } template <class T> void wt(const vector<T> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } void print() { wt('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&... tail) { wt(head); if (sizeof...(Tail)) wt(' '); print(forward<Tail>(tail)...); } // gcc expansion. called automaticall after main. void __attribute__((destructor)) _d() { flush(); } } // namespace fastio using fastio::read; using fastio::print; using fastio::flush; #if defined(LOCAL) #define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__) #define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME #define SHOW1(x) print(#x, "=", (x)), flush() #define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush() #define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush() #define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush() #define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush() #define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush() #else #define SHOW(...) #endif #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define U32(...) \ u32 __VA_ARGS__; \ read(__VA_ARGS__) #define U64(...) \ u64 __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ read(name) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 4 "test/2_library_checker/data_structure/dynamic_sequence_range_affine_range_sum_rbst.test.cpp" #line 2 "alg/monoid/add.hpp" template <typename E> struct Monoid_Add { using X = E; using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return x + y; } static constexpr X inverse(const X &x) noexcept { return -x; } static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; } static constexpr X unit() { return X(0); } static constexpr bool commute = true; }; #line 2 "alg/monoid/affine.hpp" // op(F, G) = comp(G,F), F のあとで G template <typename K> struct Monoid_Affine { using F = pair<K, K>; using value_type = F; using X = value_type; static constexpr F op(const F &x, const F &y) noexcept { return F({x.first * y.first, x.second * y.first + y.second}); } static constexpr F inverse(const F &x) { auto [a, b] = x; a = K(1) / a; return {a, a * (-b)}; } static constexpr K eval(const F &f, K x) noexcept { return f.first * x + f.second; } static constexpr F unit() { return {K(1), K(0)}; } static constexpr bool commute = false; }; #line 3 "alg/acted_monoid/sum_affine.hpp" template <typename E> struct ActedMonoid_Sum_Affine { using Monoid_X = Monoid_Add<E>; using Monoid_A = Monoid_Affine<E>; using X = typename Monoid_X::value_type; using A = typename Monoid_A::value_type; static constexpr X act(const X &x, const A &a, const ll &size) { return x * a.fi + E(size) * a.se; } }; #line 2 "mod/modint_common.hpp" struct has_mod_impl { template <class T> static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {}; template <typename mint> mint inv(int n) { static const int mod = mint::get_mod(); static vector<mint> dat = {0, 1}; assert(0 <= n); if (n >= mod) n %= mod; while (len(dat) <= n) { int k = len(dat); int q = (mod + k - 1) / k; dat.eb(dat[k * q - mod] * mint::raw(q)); } return dat[n]; } template <typename mint> mint fact(int n) { static const int mod = mint::get_mod(); assert(0 <= n && n < mod); static vector<mint> dat = {1, 1}; while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat))); return dat[n]; } template <typename mint> mint fact_inv(int n) { static vector<mint> dat = {1, 1}; if (n < 0) return mint(0); while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat))); return dat[n]; } template <class mint, class... Ts> mint fact_invs(Ts... xs) { return (mint(1) * ... * fact_inv<mint>(xs)); } template <typename mint, class Head, class... Tail> mint multinomial(Head &&head, Tail &&... tail) { return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...); } template <typename mint> mint C_dense(int n, int k) { static vvc<mint> C; static int H = 0, W = 0; auto calc = [&](int i, int j) -> mint { if (i == 0) return (j == 0 ? mint(1) : mint(0)); return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0); }; if (W <= k) { FOR(i, H) { C[i].resize(k + 1); FOR(j, W, k + 1) { C[i][j] = calc(i, j); } } W = k + 1; } if (H <= n) { C.resize(n + 1); FOR(i, H, n + 1) { C[i].resize(W); FOR(j, W) { C[i][j] = calc(i, j); } } H = n + 1; } return C[n][k]; } template <typename mint, bool large = false, bool dense = false> mint C(ll n, ll k) { assert(n >= 0); if (k < 0 || n < k) return 0; if constexpr (dense) return C_dense<mint>(n, k); if constexpr (!large) return multinomial<mint>(n, k, n - k); k = min(k, n - k); mint x(1); FOR(i, k) x *= mint(n - i); return x * fact_inv<mint>(k); } template <typename mint, bool large = false> mint C_inv(ll n, ll k) { assert(n >= 0); assert(0 <= k && k <= n); if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k); return mint(1) / C<mint, 1>(n, k); } // [x^d](1-x)^{-n} template <typename mint, bool large = false, bool dense = false> mint C_negative(ll n, ll d) { assert(n >= 0); if (d < 0) return mint(0); if (n == 0) { return (d == 0 ? mint(1) : mint(0)); } return C<mint, large, dense>(n + d - 1, d); } #line 3 "mod/modint.hpp" template <int mod> struct modint { static constexpr u32 umod = u32(mod); static_assert(umod < u32(1) << 31); u32 val; static modint raw(u32 v) { modint x; x.val = v; return x; } constexpr modint() : val(0) {} constexpr modint(u32 x) : val(x % umod) {} constexpr modint(u64 x) : val(x % umod) {} constexpr modint(u128 x) : val(x % umod) {} constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){}; bool operator<(const modint &other) const { return val < other.val; } modint &operator+=(const modint &p) { if ((val += p.val) >= umod) val -= umod; return *this; } modint &operator-=(const modint &p) { if ((val += umod - p.val) >= umod) val -= umod; return *this; } modint &operator*=(const modint &p) { val = u64(val) * p.val % umod; return *this; } modint &operator/=(const modint &p) { *this *= p.inverse(); return *this; } modint operator-() const { return modint::raw(val ? mod - val : u32(0)); } modint operator+(const modint &p) const { return modint(*this) += p; } modint operator-(const modint &p) const { return modint(*this) -= p; } modint operator*(const modint &p) const { return modint(*this) *= p; } modint operator/(const modint &p) const { return modint(*this) /= p; } bool operator==(const modint &p) const { return val == p.val; } bool operator!=(const modint &p) const { return val != p.val; } modint inverse() const { int a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return modint(u); } modint pow(ll n) const { assert(n >= 0); modint ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } static constexpr int get_mod() { return mod; } // (n, r), r は 1 の 2^n 乗根 static constexpr pair<int, int> ntt_info() { if (mod == 120586241) return {20, 74066978}; if (mod == 167772161) return {25, 17}; if (mod == 469762049) return {26, 30}; if (mod == 754974721) return {24, 362}; if (mod == 880803841) return {23, 211}; if (mod == 943718401) return {22, 663003469}; if (mod == 998244353) return {23, 31}; if (mod == 1004535809) return {21, 836905998}; if (mod == 1045430273) return {20, 363}; if (mod == 1051721729) return {20, 330}; if (mod == 1053818881) return {20, 2789}; return {-1, -1}; } static constexpr bool can_ntt() { return ntt_info().fi != -1; } }; #ifdef FASTIO template <int mod> void rd(modint<mod> &x) { fastio::rd(x.val); x.val %= mod; // assert(0 <= x.val && x.val < mod); } template <int mod> void wt(modint<mod> x) { fastio::wt(x.val); } #endif using modint107 = modint<1000000007>; using modint998 = modint<998244353>; #line 1 "ds/randomized_bst/rbst_acted_monoid.hpp" template <typename ActedMonoid, bool PERSISTENT> struct RBST_ActedMonoid { using Monoid_X = typename ActedMonoid::Monoid_X; using Monoid_A = typename ActedMonoid::Monoid_A; using X = typename Monoid_X::value_type; using A = typename Monoid_A::value_type; struct Node { Node *l, *r; X x, prod; // lazy, rev 反映済 A lazy; u32 size; bool rev; }; Node *pool; const int NODES; int pid; using np = Node *; RBST_ActedMonoid(int NODES) : NODES(NODES), pid(0) { pool = new Node[NODES]; } ~RBST_ActedMonoid() { delete[] pool; } void reset() { pid = 0; } np new_node(const X &x) { pool[pid].l = pool[pid].r = nullptr; pool[pid].x = x; pool[pid].prod = x; pool[pid].lazy = Monoid_A::unit(); pool[pid].size = 1; pool[pid].rev = 0; return &(pool[pid++]); } np new_node(const vc<X> &dat) { auto dfs = [&](auto &dfs, u32 l, u32 r) -> np { if (l == r) return nullptr; if (r == l + 1) return new_node(dat[l]); u32 m = (l + r) / 2; np l_root = dfs(dfs, l, m); np r_root = dfs(dfs, m + 1, r); np root = new_node(dat[m]); root->l = l_root, root->r = r_root; update(root); return root; }; return dfs(dfs, 0, len(dat)); } np copy_node(np &n) { if (!n || !PERSISTENT) return n; pool[pid].l = n->l, pool[pid].r = n->r; pool[pid].x = n->x; pool[pid].prod = n->prod; pool[pid].lazy = n->lazy; pool[pid].size = n->size; pool[pid].rev = n->rev; return &(pool[pid++]); } np merge(np l_root, np r_root) { return merge_rec(l_root, r_root); } np merge3(np a, np b, np c) { return merge(merge(a, b), c); } np merge4(np a, np b, np c, np d) { return merge(merge(merge(a, b), c), d); } pair<np, np> split(np root, u32 k) { if (!root) { assert(k == 0); return {nullptr, nullptr}; } assert(0 <= k && k <= root->size); return split_rec(root, k); } tuple<np, np, np> split3(np root, u32 l, u32 r) { np nm, nr; tie(root, nr) = split(root, r); tie(root, nm) = split(root, l); return {root, nm, nr}; } tuple<np, np, np, np> split4(np root, u32 i, u32 j, u32 k) { np d; tie(root, d) = split(root, k); auto [a, b, c] = split3(root, i, j); return {a, b, c, d}; } X prod(np root, u32 l, u32 r) { if (l == r) return Monoid_X::unit(); return prod_rec(root, l, r, false); } X prod(np root) { return (root ? root->prod : Monoid_X::unit()); } np reverse(np root, u32 l, u32 r) { assert(Monoid_X::commute); assert(0 <= l && l <= r && r <= root->size); if (r - l <= 1) return root; auto [nl, nm, nr] = split3(root, l, r); nm->rev ^= 1; swap(nm->l, nm->r); return merge3(nl, nm, nr); } np apply(np root, u32 l, u32 r, const A a) { assert(0 <= l && l <= r && r <= root->size); return apply_rec(root, l, r, a); } np apply(np root, const A a) { if (!root) return root; return apply_rec(root, 0, root->size, a); } np set(np root, u32 k, const X &x) { return set_rec(root, k, x); } np multiply(np root, u32 k, const X &x) { return multiply_rec(root, k, x); } X get(np root, u32 k) { return get_rec(root, k, false, Monoid_A::unit()); } vc<X> get_all(np root) { vc<X> res; auto dfs = [&](auto &dfs, np root, bool rev, A lazy) -> void { if (!root) return; X me = ActedMonoid::act(root->x, lazy, 1); lazy = Monoid_A::op(root->lazy, lazy); dfs(dfs, (rev ? root->r : root->l), rev ^ root->rev, lazy); res.eb(me); dfs(dfs, (rev ? root->l : root->r), rev ^ root->rev, lazy); }; dfs(dfs, root, 0, Monoid_A::unit()); return res; } template <typename F> pair<np, np> split_max_right(np root, const F check) { assert(check(Monoid_X::unit())); X x = Monoid_X::unit(); return split_max_right_rec(root, check, x); } private: inline u32 xor128() { static u32 x = 123456789; static u32 y = 362436069; static u32 z = 521288629; static u32 w = 88675123; u32 t = x ^ (x << 11); x = y; y = z; z = w; return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); } void prop(np c) { // 自身をコピーする必要はない。 // 子をコピーする必要がある。複数の親を持つ可能性があるため。 bool bl_lazy = (c->lazy != Monoid_A::unit()); bool bl_rev = c->rev; if (bl_lazy || bl_rev) { c->l = copy_node(c->l); c->r = copy_node(c->r); } if (c->lazy != Monoid_A::unit()) { if (c->l) { c->l->x = ActedMonoid::act(c->l->x, c->lazy, 1); c->l->prod = ActedMonoid::act(c->l->prod, c->lazy, c->l->size); c->l->lazy = Monoid_A::op(c->l->lazy, c->lazy); } if (c->r) { c->r->x = ActedMonoid::act(c->r->x, c->lazy, 1); c->r->prod = ActedMonoid::act(c->r->prod, c->lazy, c->r->size); c->r->lazy = Monoid_A::op(c->r->lazy, c->lazy); } c->lazy = Monoid_A::unit(); } if (c->rev) { if (c->l) { c->l->rev ^= 1; swap(c->l->l, c->l->r); } if (c->r) { c->r->rev ^= 1; swap(c->r->l, c->r->r); } c->rev = 0; } } void update(np c) { // データを保ったまま正常化するだけなので、コピー不要 c->size = 1; c->prod = c->x; if (c->l) { c->size += c->l->size; c->prod = Monoid_X::op(c->l->prod, c->prod); } if (c->r) { c->size += c->r->size; c->prod = Monoid_X::op(c->prod, c->r->prod); } } np merge_rec(np l_root, np r_root) { if (!l_root) return r_root; if (!r_root) return l_root; u32 sl = l_root->size, sr = r_root->size; if (xor128() % (sl + sr) < sl) { prop(l_root); l_root = copy_node(l_root); l_root->r = merge_rec(l_root->r, r_root); update(l_root); return l_root; } prop(r_root); r_root = copy_node(r_root); r_root->l = merge_rec(l_root, r_root->l); update(r_root); return r_root; } pair<np, np> split_rec(np root, u32 k) { if (!root) return {nullptr, nullptr}; prop(root); u32 sl = (root->l ? root->l->size : 0); if (k <= sl) { auto [nl, nr] = split_rec(root->l, k); root = copy_node(root); root->l = nr; update(root); return {nl, root}; } auto [nl, nr] = split_rec(root->r, k - (1 + sl)); root = copy_node(root); root->r = nl; update(root); return {root, nr}; } np set_rec(np root, u32 k, const X &x) { if (!root) return root; prop(root); u32 sl = (root->l ? root->l->size : 0); if (k < sl) { root = copy_node(root); root->l = set_rec(root->l, k, x); update(root); return root; } if (k == sl) { root = copy_node(root); root->x = x; update(root); return root; } root = copy_node(root); root->r = set_rec(root->r, k - (1 + sl), x); update(root); return root; } np multiply_rec(np root, u32 k, const X &x) { if (!root) return root; prop(root); u32 sl = (root->l ? root->l->size : 0); if (k < sl) { root = copy_node(root); root->l = multiply_rec(root->l, k, x); update(root); return root; } if (k == sl) { root = copy_node(root); root->x = Monoid_X::op(root->x, x); update(root); return root; } root = copy_node(root); root->r = multiply_rec(root->r, k - (1 + sl), x); update(root); return root; } X prod_rec(np root, u32 l, u32 r, bool rev) { if (l == 0 && r == root->size) { return root->prod; } np left = (rev ? root->r : root->l); np right = (rev ? root->l : root->r); u32 sl = (left ? left->size : 0); X res = Monoid_X::unit(); if (l < sl) { X y = prod_rec(left, l, min(r, sl), rev ^ root->rev); res = Monoid_X::op(res, ActedMonoid::act(y, root->lazy, min(r, sl) - l)); } if (l <= sl && sl < r) res = Monoid_X::op(res, root->x); u32 k = 1 + sl; if (k < r) { X y = prod_rec(right, max(k, l) - k, r - k, rev ^ root->rev); res = Monoid_X::op(res, ActedMonoid::act(y, root->lazy, r - max(k, l))); } return res; } X get_rec(np root, u32 k, bool rev, A lazy) { np left = (rev ? root->r : root->l); np right = (rev ? root->l : root->r); u32 sl = (left ? left->size : 0); if (k == sl) return ActedMonoid::act(root->x, lazy, 1); lazy = Monoid_A::op(root->lazy, lazy); rev ^= root->rev; if (k < sl) return get_rec(left, k, rev, lazy); return get_rec(right, k - (1 + sl), rev, lazy); } np apply_rec(np root, u32 l, u32 r, const A &a) { prop(root); root = copy_node(root); if (l == 0 && r == root->size) { root->x = ActedMonoid::act(root->x, a, 1); root->prod = ActedMonoid::act(root->prod, a, root->size); root->lazy = a; return root; } u32 sl = (root->l ? root->l->size : 0); if (l < sl) root->l = apply_rec(root->l, l, min(r, sl), a); if (l <= sl && sl < r) root->x = ActedMonoid::act(root->x, a, 1); u32 k = 1 + sl; if (k < r) root->r = apply_rec(root->r, max(k, l) - k, r - k, a); update(root); return root; } template <typename F> pair<np, np> split_max_right_rec(np root, F check, X &x) { if (!root) return {nullptr, nullptr}; prop(root); root = copy_node(root); X y = Monoid_X::op(x, root->prod); if (check(y)) { x = y; return {root, nullptr}; } np left = root->l, right = root->r; if (left) { X y = Monoid_X::op(x, root->l->prod); if (!check(y)) { auto [n1, n2] = split_max_right_rec(left, check, x); root->l = n2; update(root); return {n1, root}; } x = y; } y = Monoid_X::op(x, root->x); if (!check(y)) { root->l = nullptr; update(root); return {left, root}; } x = y; auto [n1, n2] = split_max_right_rec(right, check, x); root->r = n1; update(root); return {root, n2}; } }; #line 8 "test/2_library_checker/data_structure/dynamic_sequence_range_affine_range_sum_rbst.test.cpp" using mint = modint998; void solve() { LL(N, Q); VEC(mint, A, N); RBST_ActedMonoid<ActedMonoid_Sum_Affine<mint>, false> X(N + Q); auto root = X.new_node(A); FOR(Q) { LL(t); if (t == 0) { LL(i, x); auto [a, b] = X.split(root, i); root = X.merge3(a, X.new_node(mint(x)), b); } if (t == 1) { LL(i); auto [a, b, c] = X.split3(root, i, i + 1); root = X.merge(a, c); } if (t == 2) { LL(l, r); root = X.reverse(root, l, r); } if (t == 3) { LL(l, r, b, c); root = X.apply(root, l, r, {mint(b), mint(c)}); } if (t == 4) { LL(l, r); print(X.prod(root, l, r)); } } } signed main() { solve(); return 0; }