This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#include "my_template.hpp"
#include "random/base.hpp"
#include "nt/three_triangular.hpp"
void test() {
auto T = [&](ll x) -> ll { return x * (x - 1) / 2; };
FOR(N, 1, 1000000) {
auto [a, b, c] = three_triangular(N);
assert(N == T(a) + T(b) + T(c));
}
vi TEN = {1};
FOR(18) TEN.eb(TEN.back() * 10);
FOR(100000) {
ll K = RNG(0, 18);
ll N = RNG(TEN[K], TEN[K + 1]);
auto [a, b, c] = three_triangular(N);
assert(N == T(a) + T(b) + T(c));
}
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
test();
solve();
return 0;
}
#line 1 "test/1_mytest/three_triangular.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T kth_bit(int k) {
return T(1) << k;
}
template <typename T>
bool has_kth_bit(T x, int k) {
return x >> k & 1;
}
template <typename UINT>
struct all_bit {
struct iter {
UINT s;
iter(UINT s) : s(s) {}
int operator*() const { return lowbit(s); }
iter &operator++() {
s &= s - 1;
return *this;
}
bool operator!=(const iter) const { return s != 0; }
};
UINT s;
all_bit(UINT s) : s(s) {}
iter begin() const { return iter(s); }
iter end() const { return iter(0); }
};
template <typename UINT>
struct all_subset {
static_assert(is_unsigned<UINT>::value);
struct iter {
UINT s, t;
bool ed;
iter(UINT s) : s(s), t(s), ed(0) {}
int operator*() const { return s ^ t; }
iter &operator++() {
(t == 0 ? ed = 1 : t = (t - 1) & s);
return *this;
}
bool operator!=(const iter) const { return !ed; }
};
UINT s;
all_subset(UINT s) : s(s) {}
iter begin() const { return iter(s); }
iter end() const { return iter(0); }
};
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 3 "test/1_mytest/three_triangular.test.cpp"
#line 2 "random/base.hpp"
u64 RNG_64() {
static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "mod/mongomery_modint.hpp"
// odd mod.
// x の代わりに rx を持つ
template <int id, typename U1, typename U2>
struct Mongomery_modint {
using mint = Mongomery_modint;
inline static U1 m, r, n2;
static constexpr int W = numeric_limits<U1>::digits;
static void set_mod(U1 mod) {
assert(mod & 1 && mod <= U1(1) << (W - 2));
m = mod, n2 = -U2(m) % m, r = m;
FOR(5) r *= 2 - m * r;
r = -r;
assert(r * m == U1(-1));
}
static U1 reduce(U2 b) { return (b + U2(U1(b) * r) * m) >> W; }
U1 x;
Mongomery_modint() : x(0) {}
Mongomery_modint(U1 x) : x(reduce(U2(x) * n2)){};
U1 val() const {
U1 y = reduce(x);
return y >= m ? y - m : y;
}
mint &operator+=(mint y) {
x = ((x += y.x) >= m ? x - m : x);
return *this;
}
mint &operator-=(mint y) {
x -= (x >= y.x ? y.x : y.x - m);
return *this;
}
mint &operator*=(mint y) {
x = reduce(U2(x) * y.x);
return *this;
}
mint operator+(mint y) const { return mint(*this) += y; }
mint operator-(mint y) const { return mint(*this) -= y; }
mint operator*(mint y) const { return mint(*this) *= y; }
bool operator==(mint y) const {
return (x >= m ? x - m : x) == (y.x >= m ? y.x - m : y.x);
}
bool operator!=(mint y) const { return not operator==(y); }
mint pow(ll n) const {
assert(n >= 0);
mint y = 1, z = *this;
for (; n; n >>= 1, z *= z)
if (n & 1) y *= z;
return y;
}
};
template <int id>
using Mongomery_modint_32 = Mongomery_modint<id, u32, u64>;
template <int id>
using Mongomery_modint_64 = Mongomery_modint<id, u64, u128>;
#line 3 "nt/primetest.hpp"
bool primetest(const u64 x) {
assert(x < u64(1) << 62);
if (x == 2 or x == 3 or x == 5 or x == 7) return true;
if (x % 2 == 0 or x % 3 == 0 or x % 5 == 0 or x % 7 == 0) return false;
if (x < 121) return x > 1;
const u64 d = (x - 1) >> lowbit(x - 1);
using mint = Mongomery_modint_64<202311020>;
mint::set_mod(x);
const mint one(u64(1)), minus_one(x - 1);
auto ok = [&](u64 a) -> bool {
auto y = mint(a).pow(d);
u64 t = d;
while (y != one && y != minus_one && t != x - 1) y *= y, t <<= 1;
if (y != minus_one && t % 2 == 0) return false;
return true;
};
if (x < (u64(1) << 32)) {
for (u64 a: {2, 7, 61})
if (!ok(a)) return false;
} else {
for (u64 a: {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) {
if (!ok(a)) return false;
}
}
return true;
}
#line 2 "nt/factor.hpp"
#line 5 "nt/factor.hpp"
template <typename mint>
ll rho(ll n, ll c) {
assert(n > 1);
const mint cc(c);
auto f = [&](mint x) { return x * x + cc; };
mint x = 1, y = 2, z = 1, q = 1;
ll g = 1;
const ll m = 1LL << (__lg(n) / 5);
for (ll r = 1; g == 1; r <<= 1) {
x = y;
FOR(r) y = f(y);
for (ll k = 0; k < r && g == 1; k += m) {
z = y;
FOR(min(m, r - k)) y = f(y), q *= x - y;
g = gcd(q.val(), n);
}
}
if (g == n) do {
z = f(z);
g = gcd((x - z).val(), n);
} while (g == 1);
return g;
}
ll find_prime_factor(ll n) {
assert(n > 1);
if (primetest(n)) return n;
FOR(100) {
ll m = 0;
if (n < (1 << 30)) {
using mint = Mongomery_modint_32<20231025>;
mint::set_mod(n);
m = rho<mint>(n, RNG(0, n));
} else {
using mint = Mongomery_modint_64<20231025>;
mint::set_mod(n);
m = rho<mint>(n, RNG(0, n));
}
if (primetest(m)) return m;
n = m;
}
assert(0);
return -1;
}
// ソートしてくれる
vc<pair<ll, int>> factor(ll n) {
assert(n >= 1);
vc<pair<ll, int>> pf;
FOR(p, 2, 100) {
if (p * p > n) break;
if (n % p == 0) {
ll e = 0;
do { n /= p, e += 1; } while (n % p == 0);
pf.eb(p, e);
}
}
while (n > 1) {
ll p = find_prime_factor(n);
ll e = 0;
do { n /= p, e += 1; } while (n % p == 0);
pf.eb(p, e);
}
sort(all(pf));
return pf;
}
vc<pair<ll, int>> factor_by_lpf(ll n, vc<int>& lpf) {
vc<pair<ll, int>> res;
while (n > 1) {
int p = lpf[n];
int e = 0;
while (n % p == 0) {
n /= p;
++e;
}
res.eb(p, e);
}
return res;
}
#line 2 "mod/mod_pow.hpp"
#line 2 "mod/barrett.hpp"
// https://github.com/atcoder/ac-library/blob/master/atcoder/internal_math.hpp
struct Barrett {
u32 m;
u64 im;
explicit Barrett(u32 m = 1) : m(m), im(u64(-1) / m + 1) {}
u32 umod() const { return m; }
u32 modulo(u64 z) {
if (m == 1) return 0;
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
return (z - y + (z < y ? m : 0));
}
u64 floor(u64 z) {
if (m == 1) return z;
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
return (z < y ? x - 1 : x);
}
pair<u64, u32> divmod(u64 z) {
if (m == 1) return {z, 0};
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
if (z < y) return {x - 1, z - y + m};
return {x, z - y};
}
u32 mul(u32 a, u32 b) { return modulo(u64(a) * b); }
};
struct Barrett_64 {
u128 mod, mh, ml;
explicit Barrett_64(u64 mod = 1) : mod(mod) {
u128 m = u128(-1) / mod;
if (m * mod + mod == u128(0)) ++m;
mh = m >> 64;
ml = m & u64(-1);
}
u64 umod() const { return mod; }
u64 modulo(u128 x) {
u128 z = (x & u64(-1)) * ml;
z = (x & u64(-1)) * mh + (x >> 64) * ml + (z >> 64);
z = (x >> 64) * mh + (z >> 64);
x -= z * mod;
return x < mod ? x : x - mod;
}
u64 mul(u64 a, u64 b) { return modulo(u128(a) * b); }
};
#line 5 "mod/mod_pow.hpp"
u32 mod_pow(int a, ll n, int mod) {
assert(n >= 0);
if (mod == 1) return 0;
a = ((a %= mod) < 0 ? a + mod : a);
if ((mod & 1) && (mod < (1 << 30))) {
using mint = Mongomery_modint_32<202311021>;
mint::set_mod(mod);
return mint(a).pow(n).val();
}
Barrett bt(mod);
int r = 1;
while (n) {
if (n & 1) r = bt.mul(r, a);
a = bt.mul(a, a), n >>= 1;
}
return r;
}
u64 mod_pow_64(ll a, ll n, u64 mod) {
assert(n >= 0);
if (mod == 1) return 0;
a = ((a %= mod) < 0 ? a + mod : a);
if ((mod & 1) && (mod < (u64(1) << 62))) {
using mint = Mongomery_modint_64<202311021>;
mint::set_mod(mod);
return mint(a).pow(n).val();
}
Barrett_64 bt(mod);
ll r = 1;
while (n) {
if (n & 1) r = bt.mul(r, a);
a = bt.mul(a, a), n >>= 1;
}
return r;
}
#line 3 "nt/gaussian_integers.hpp"
template <typename T>
struct Gaussian_Integer {
T x, y;
using G = Gaussian_Integer;
Gaussian_Integer(T x = 0, T y = 0) : x(x), y(y) {}
Gaussian_Integer(pair<T, T> p) : x(p.fi), y(p.se) {}
T norm() const { return x * x + y * y; }
G conjugate() const { return G(x, -y); }
G &operator+=(const G &g) {
x += g.x, y += g.y;
return *this;
}
G &operator-=(const G &g) {
x -= g.x, y -= g.y;
return *this;
}
G &operator*=(const G &g) {
tie(x, y) = mp(x * g.x - y * g.y, x * g.y + y * g.x);
return *this;
}
G &operator/=(const G &g) {
*this *= g.conjugate();
T n = g.norm();
x = floor(x + n / 2, n);
y = floor(y + n / 2, n);
return *this;
}
G &operator%=(const G &g) {
auto q = G(*this) / g;
q *= g;
(*this) -= q;
return *this;
}
G operator-() { return G(-x, -y); }
G operator+(const G &g) { return G(*this) += g; }
G operator-(const G &g) { return G(*this) -= g; }
G operator*(const G &g) { return G(*this) *= g; }
G operator/(const G &g) { return G(*this) /= g; }
G operator%(const G &g) { return G(*this) %= g; }
bool operator==(const G &g) { return (x == g.x && y == g.y); }
static G gcd(G a, G b) {
while (b.x != 0 || b.y != 0) {
a %= b;
swap(a, b);
}
return a;
}
G pow(ll n) const {
assert(n >= 0);
G ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
// (g,x,y) s.t ax+by=g
static tuple<G, G, G> extgcd(G a, G b) {
if (b.x != 0 || b.y != 0) {
G q = a / b;
auto [g, x, y] = extgcd(b, a - q * b);
return {g, y, x - q * y};
}
return {a, G{1, 0}, G{0, 0}};
}
};
pair<ll, ll> solve_norm_equation_prime(ll p) {
using G = Gaussian_Integer<i128>;
assert(p == 2 || p % 4 == 1);
if (p == 2) return {1, 1};
ll x = [&]() -> ll {
ll x = 1;
while (1) {
++x;
ll pow_x = 1;
if (p < (1 << 30)) {
pow_x = mod_pow(x, (p - 1) / 4, p);
if (pow_x * pow_x % p == p - 1) return pow_x;
} else {
pow_x = mod_pow_64(x, (p - 1) / 4, p);
if (i128(pow_x) * pow_x % p == p - 1) return pow_x;
}
}
return -1;
}();
G a(p, 0), b(x, 1);
a = G::gcd(a, b);
assert(a.norm() == p);
return {a.x, a.y};
}
template <typename T>
vc<Gaussian_Integer<T>> solve_norm_equation_factor(vc<pair<ll, int>> pfs) {
using G = Gaussian_Integer<T>;
vc<G> res;
for (auto &&[p, e]: pfs) {
if (p % 4 == 3 && e % 2 == 1) return {};
}
res.eb(G(1, 0));
for (auto &&[p, e]: pfs) {
if (p % 4 == 3) {
T pp = 1;
FOR(e / 2) pp *= p;
for (auto &&g: res) {
g.x *= pp;
g.y *= pp;
}
continue;
}
auto [pix, piy] = solve_norm_equation_prime(p);
G pi(pix, piy);
vc<G> pows(e + 1);
pows[0] = G(1, 0);
FOR(i, e) pows[i + 1] = pows[i] * pi;
if (p == 2) {
for (auto &&g: res) g *= pows[e];
continue;
}
vc<G> pis(e + 1);
FOR(j, e + 1) { pis[j] = pows[j] * (pows[e - j].conjugate()); }
vc<G> new_res;
new_res.reserve(len(res) * (e + 1));
for (auto &&g: res) {
for (auto &&a: pis) { new_res.eb(g * a); }
}
swap(res, new_res);
}
for (auto &&g: res) {
while (g.x <= 0 || g.y < 0) { g = G(-g.y, g.x); }
}
return res;
}
// i128 を使うと N <= 10^{18} もできる
// ノルムがとれるように、2 乗してもオーバーフローしない型を使おう
// 0 <= arg < 90 となるもののみ返す。
// 単数倍は作らないので、使うときに気を付ける。
template <typename T>
vc<Gaussian_Integer<T>> solve_norm_equation(T N) {
using G = Gaussian_Integer<T>;
vc<G> res;
if (N < 0) return {};
if (N == 0) {
res.eb(G(0, 0));
return res;
}
auto pfs = factor(N);
return solve_norm_equation_factor<T>(pfs);
}
#line 3 "nt/three_square.hpp"
// https://math.stackexchange.com/questions/483101/rabin-and-shallit-algorithm
// ERH のもと O(log^2N) ?
tuple<ll, ll, ll> three_square(ll N) {
if (N == 0) return {0, 0, 0};
auto F = [&](ll n) -> tuple<ll, ll, ll> {
if (N == 2) return {1, 1, 0};
if (N == 3) return {1, 1, 1};
if (N == 10) return {3, 1, 0};
if (N == 34) return {5, 3, 0};
if (N == 58) return {7, 3, 0};
if (N == 85) return {9, 2, 0};
if (N == 130) return {11, 3, 0};
if (N == 214) return {14, 3, 3};
if (N == 226) return {15, 1, 0};
if (N == 370) return {19, 3, 0};
if (N == 526) return {21, 9, 2};
if (N == 706) return {25, 9, 0};
if (N == 730) return {27, 1, 0};
if (N == 1414) return {33, 18, 1};
if (N == 1906) return {41, 15, 0};
if (N == 2986) return {45, 31, 0};
if (N == 9634) return {97, 15, 0};
ll x = sqrtl(N);
if (N == x * x) return {x, 0, 0};
if (N % 4 != 1 && x % 2 == 0) --x;
if (N % 4 == 1 && x % 2 == 1) --x;
x += 2;
while (1) {
x -= 2;
ll k = N - x * x;
if (k < 0) break;
if (k % 2 == 1 && primetest(k)) {
auto [a, b] = solve_norm_equation_prime(k);
a = abs(a), b = abs(b);
return {a, b, x};
}
if (k % 2 == 0 && primetest(k / 2)) {
auto [a, b] = solve_norm_equation_prime(k / 2);
tie(a, b) = mp(a + b, a - b);
a = abs(a), b = abs(b);
return {a, b, x};
}
}
assert(0);
return {-1, -1, -1};
};
ll e = 0;
while (N % 4 == 0) N /= 4, ++e;
if (N % 8 == 7) return {-1, -1, -1};
auto [a, b, c] = F(N);
return {a << e, b << e, c << e};
}
#line 2 "nt/three_triangular.hpp"
// 3 つの x(x-1)/2 の和にする
tuple<ll, ll, ll> three_triangular(ll N) {
auto [a, b, c] = three_square(8 * N + 3);
a = (a + 1) / 2;
b = (b + 1) / 2;
c = (c + 1) / 2;
return {a, b, c};
}
#line 6 "test/1_mytest/three_triangular.test.cpp"
void test() {
auto T = [&](ll x) -> ll { return x * (x - 1) / 2; };
FOR(N, 1, 1000000) {
auto [a, b, c] = three_triangular(N);
assert(N == T(a) + T(b) + T(c));
}
vi TEN = {1};
FOR(18) TEN.eb(TEN.back() * 10);
FOR(100000) {
ll K = RNG(0, 18);
ll N = RNG(TEN[K], TEN[K + 1]);
auto [a, b, c] = three_triangular(N);
assert(N == T(a) + T(b) + T(c));
}
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
test();
solve();
return 0;
}