This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#include "my_template.hpp"
#include "alg/acted_monoid/sum_add.hpp"
#include "mod/modint.hpp"
#include "random/base.hpp"
#include "ds/splaytree/splaytree_acted_monoid.hpp"
using mint = modint998;
void test() {
using AM = ActedMonoid_Sum_Add<int>;
FOR(1000) {
int N = RNG(1, 10);
int Q = RNG(1, 1000);
SplayTree_ActedMonoid<AM> X(N);
vc<int> A(N);
FOR(i, N) A[i] = RNG(1, 10);
auto root = X.new_node(A);
FOR(Q) {
int t = RNG(0, 7);
if (t == 0) {
vc<int> B = X.get_all(root);
FOR(i, N) assert(A[i] == B[i]);
}
if (t == 1) {
int i = RNG(0, N);
assert(A[i] == X.get(root, i));
}
if (t == 2) {
int i = RNG(0, N);
int x = RNG(1, 10);
X.set(root, i, x);
A[i] = x;
}
if (t == 3) {
int i = RNG(0, N);
int x = RNG(1, 10);
X.multiply(root, i, x);
A[i] += x;
}
if (t == 4) {
int L = RNG(0, N);
int R = RNG(0, N);
if (L > R) swap(L, R);
++R;
int sm = 0;
FOR(i, L, R) sm += A[i];
assert(X.prod(root, L, R) == sm);
}
if (t == 5) {
int L = RNG(0, N);
int R = RNG(0, N);
if (L > R) swap(L, R);
++R;
X.reverse(root, L, R);
reverse(A.begin() + L, A.begin() + R);
}
if (t == 6) {
int L = RNG(0, N);
int R = RNG(0, N);
if (L > R) swap(L, R);
int a = RNG(1, 10);
++R;
FOR(i, L, R) A[i] += a;
X.apply(root, L, R, a);
}
}
}
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
test();
solve();
return 0;
}
#line 1 "test/1_mytest/splay_am.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
// https://codeforces.com/blog/entry/126772?#comment-1154880
#include <bits/allocator.h>
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T kth_bit(int k) {
return T(1) << k;
}
template <typename T>
bool has_kth_bit(T x, int k) {
return x >> k & 1;
}
template <typename UINT>
struct all_bit {
struct iter {
UINT s;
iter(UINT s) : s(s) {}
int operator*() const { return lowbit(s); }
iter &operator++() {
s &= s - 1;
return *this;
}
bool operator!=(const iter) const { return s != 0; }
};
UINT s;
all_bit(UINT s) : s(s) {}
iter begin() const { return iter(s); }
iter end() const { return iter(0); }
};
template <typename UINT>
struct all_subset {
static_assert(is_unsigned<UINT>::value);
struct iter {
UINT s, t;
bool ed;
iter(UINT s) : s(s), t(s), ed(0) {}
int operator*() const { return s ^ t; }
iter &operator++() {
(t == 0 ? ed = 1 : t = (t - 1) & s);
return *this;
}
bool operator!=(const iter) const { return !ed; }
};
UINT s;
all_subset(UINT s) : s(s) {}
iter begin() const { return iter(s); }
iter end() const { return iter(0); }
};
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 3 "test/1_mytest/splay_am.test.cpp"
#line 2 "alg/monoid/add.hpp"
template <typename E>
struct Monoid_Add {
using X = E;
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
static constexpr X inverse(const X &x) noexcept { return -x; }
static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
static constexpr X unit() { return X(0); }
static constexpr bool commute = true;
};
#line 2 "alg/acted_monoid/sum_add.hpp"
template <typename E>
struct ActedMonoid_Sum_Add {
using Monoid_X = Monoid_Add<E>;
using Monoid_A = Monoid_Add<E>;
using X = typename Monoid_X::value_type;
using A = typename Monoid_A::value_type;
static constexpr X act(const X &x, const A &a, const ll &size) {
return x + a * E(size);
}
};
#line 2 "mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint::raw(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n && n < mod);
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static vector<mint> dat = {1, 1};
if (n < 0) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "mod/modint.hpp"
template <int mod>
struct modint {
static constexpr u32 umod = u32(mod);
static_assert(umod < u32(1) << 31);
u32 val;
static modint raw(u32 v) {
modint x;
x.val = v;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(u32 x) : val(x % umod) {}
constexpr modint(u64 x) : val(x % umod) {}
constexpr modint(u128 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = u64(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 120586241) return {20, 74066978};
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 998244353) return {23, 31};
if (mod == 1004535809) return {21, 582313106};
if (mod == 1012924417) return {21, 368093570};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
fastio::rd(x.val);
x.val %= mod;
// assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
fastio::wt(x.val);
}
#endif
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 2 "random/base.hpp"
u64 RNG_64() {
static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "ds/splaytree/splaytree.hpp"
/*
update でちゃんと prod が計算されてくれれば prod は op(lprod,x,rprod) でなくてもよい.
*/
// Node 型を別に定義して使う
template <typename Node>
struct SplayTree {
Node *pool;
const int NODES;
int pid;
using np = Node *;
using X = typename Node::value_type;
using A = typename Node::operator_type;
vc<np> FREE;
SplayTree(int NODES) : NODES(NODES), pid(0) { pool = new Node[NODES]; }
~SplayTree() { delete[] pool; }
void free_subtree(np c) {
if (!c) return;
auto dfs = [&](auto &dfs, np c) -> void {
if (c->l) dfs(dfs, c->l);
if (c->r) dfs(dfs, c->r);
FREE.eb(c);
};
dfs(dfs, c);
}
void reset() {
pid = 0;
FREE.clear();
}
np new_root() { return nullptr; }
np new_node(const X &x) {
assert(!FREE.empty() || pid < NODES);
np n = (FREE.empty() ? &(pool[pid++]) : POP(FREE));
Node::new_node(n, x);
return n;
}
np new_node(const vc<X> &dat) {
auto dfs = [&](auto &dfs, int l, int r) -> np {
if (l == r) return nullptr;
if (r == l + 1) return new_node(dat[l]);
int m = (l + r) / 2;
np l_root = dfs(dfs, l, m);
np r_root = dfs(dfs, m + 1, r);
np root = new_node(dat[m]);
root->l = l_root, root->r = r_root;
if (l_root) l_root->p = root;
if (r_root) r_root->p = root;
root->update();
return root;
};
return dfs(dfs, 0, len(dat));
}
u32 get_size(np root) { return (root ? root->size : 0); }
np merge(np l_root, np r_root) {
if (!l_root) return r_root;
if (!r_root) return l_root;
assert((!l_root->p) && (!r_root->p));
splay_kth(r_root, 0); // splay したので prop 済
r_root->l = l_root;
l_root->p = r_root;
r_root->update();
return r_root;
}
np merge3(np a, np b, np c) { return merge(merge(a, b), c); }
np merge4(np a, np b, np c, np d) { return merge(merge(merge(a, b), c), d); }
pair<np, np> split(np root, u32 k) {
assert(!root || !root->p);
if (k == 0) return {nullptr, root};
if (k == (root->size)) return {root, nullptr};
splay_kth(root, k - 1);
np right = root->r;
root->r = nullptr, right->p = nullptr;
root->update();
return {root, right};
}
tuple<np, np, np> split3(np root, u32 l, u32 r) {
np nm, nr;
tie(root, nr) = split(root, r);
tie(root, nm) = split(root, l);
return {root, nm, nr};
}
tuple<np, np, np, np> split4(np root, u32 i, u32 j, u32 k) {
np d;
tie(root, d) = split(root, k);
auto [a, b, c] = split3(root, i, j);
return {a, b, c, d};
}
tuple<np, np, np> split_L_root_R(np root) {
u32 s = (root->l ? root->l->size : 0);
return split3(root, s, s + 1);
}
// 部分木が区間 [l,r) に対応するようなノードを作って返す
// そのノードが root になるわけではないので、
// このノードを参照した後にすぐに splay して根に持ち上げること
void goto_between(np &root, u32 l, u32 r) {
if (l == 0 && r == root->size) return;
if (l == 0) {
splay_kth(root, r);
root = root->l;
return;
}
if (r == root->size) {
splay_kth(root, l - 1);
root = root->r;
return;
}
splay_kth(root, r);
np rp = root;
root = rp->l;
root->p = nullptr;
splay_kth(root, l - 1);
root->p = rp;
rp->l = root;
rp->update();
root = root->r;
}
vc<X> get_all(const np &root) {
vc<X> res;
auto dfs = [&](auto &dfs, np root) -> void {
if (!root) return;
root->prop();
dfs(dfs, root->l);
res.eb(root->get());
dfs(dfs, root->r);
};
dfs(dfs, root);
return res;
}
X get(np &root, u32 k) {
assert(root == nullptr || !root->p);
splay_kth(root, k);
return root->get();
}
void set(np &root, u32 k, const X &x) {
assert(root != nullptr && !root->p);
splay_kth(root, k);
root->set(x);
}
void multiply(np &root, u32 k, const X &x) {
assert(root != nullptr && !root->p);
splay_kth(root, k);
root->multiply(x);
}
X prod(np &root, u32 l, u32 r) {
assert(root == nullptr || !root->p);
using Mono = typename Node::Monoid_X;
if (l == r) return Mono::unit();
assert(0 <= l && l < r && r <= root->size);
goto_between(root, l, r);
X res = root->prod;
splay(root, true);
return res;
}
X prod(np &root) {
assert(root == nullptr || !root->p);
using Mono = typename Node::Monoid_X;
return (root ? root->prod : Mono::unit());
}
void apply(np &root, u32 l, u32 r, const A &a) {
if (l == r) return;
assert(0 <= l && l < r && r <= root->size);
goto_between(root, l, r);
root->apply(a);
splay(root, true);
}
void apply(np &root, const A &a) {
if (!root) return;
root->apply(a);
}
void reverse(np &root, u32 l, u32 r) {
assert(root == nullptr || !root->p);
if (l == r) return;
assert(0 <= l && l < r && r <= root->size);
goto_between(root, l, r);
root->reverse();
splay(root, true);
}
void reverse(np root) {
if (!root) return;
root->reverse();
}
void rotate(Node *n) {
// n を根に近づける。prop, update は rotate の外で行う。
Node *pp, *p, *c;
p = n->p;
pp = p->p;
if (p->l == n) {
c = n->r;
n->r = p;
p->l = c;
} else {
c = n->l;
n->l = p;
p->r = c;
}
if (pp && pp->l == p) pp->l = n;
if (pp && pp->r == p) pp->r = n;
n->p = pp;
p->p = n;
if (c) c->p = p;
}
void prop_from_root(np c) {
if (!c->p) {
c->prop();
return;
}
prop_from_root(c->p);
c->prop();
}
void splay(Node *me, bool prop_from_root_done) {
// これを呼ぶ時点で、me の祖先(me を除く)は既に prop 済であることを仮定
// 特に、splay 終了時点で me は upd / prop 済である
if (!prop_from_root_done) prop_from_root(me);
me->prop();
while (me->p) {
np p = me->p;
np pp = p->p;
if (!pp) {
rotate(me);
p->update();
break;
}
bool same = (p->l == me && pp->l == p) || (p->r == me && pp->r == p);
if (same) rotate(p), rotate(me);
if (!same) rotate(me), rotate(me);
pp->update(), p->update();
}
// me の update は最後だけでよい
me->update();
}
void splay_kth(np &root, u32 k) {
assert(0 <= k && k < (root->size));
while (1) {
root->prop();
u32 sl = (root->l ? root->l->size : 0);
if (k == sl) break;
if (k < sl)
root = root->l;
else {
k -= sl + 1;
root = root->r;
}
}
splay(root, true);
}
// check(x), 左側のノード全体が check を満たすように切る
template <typename F>
pair<np, np> split_max_right(np root, F check) {
if (!root) return {nullptr, nullptr};
assert(!root->p);
np c = find_max_right(root, check);
if (!c) {
splay(root, true);
return {nullptr, root};
}
splay(c, true);
np right = c->r;
if (!right) return {c, nullptr};
right->p = nullptr;
c->r = nullptr;
c->update();
return {c, right};
}
// check(x, cnt), 左側のノード全体が check を満たすように切る
template <typename F>
pair<np, np> split_max_right_cnt(np root, F check) {
if (!root) return {nullptr, nullptr};
assert(!root->p);
np c = find_max_right_cnt(root, check);
if (!c) {
splay(root, true);
return {nullptr, root};
}
splay(c, true);
np right = c->r;
if (!right) return {c, nullptr};
right->p = nullptr;
c->r = nullptr;
c->update();
return {c, right};
}
// 左側のノード全体の prod が check を満たすように切る
template <typename F>
pair<np, np> split_max_right_prod(np root, F check) {
if (!root) return {nullptr, nullptr};
assert(!root->p);
np c = find_max_right_prod(root, check);
if (!c) {
splay(root, true);
return {nullptr, root};
}
splay(c, true);
np right = c->r;
if (!right) return {c, nullptr};
right->p = nullptr;
c->r = nullptr;
c->update();
return {c, right};
}
template <typename F>
np find_max_right(np root, const F &check) {
// 最後に見つけた ok の点、最後に探索した点
np last_ok = nullptr, last = nullptr;
while (root) {
last = root;
root->prop();
if (check(root->x)) {
last_ok = root;
root = root->r;
} else {
root = root->l;
}
}
splay(last, true);
return last_ok;
}
template <typename F>
np find_max_right_cnt(np root, const F &check) {
// 最後に見つけた ok の点、最後に探索した点
np last_ok = nullptr, last = nullptr;
ll n = 0;
while (root) {
last = root;
root->prop();
ll ns = (root->l ? root->l->size : 0);
if (check(root->x, n + ns + 1)) {
last_ok = root;
n += ns + 1;
root = root->r;
} else {
root = root->l;
}
}
splay(last, true);
return last_ok;
}
template <typename F>
np find_max_right_prod(np root, const F &check) {
using Mono = typename Node::Monoid_X;
X prod = Mono::unit();
// 最後に見つけた ok の点、最後に探索した点
np last_ok = nullptr, last = nullptr;
while (root) {
last = root;
root->prop();
np tmp = root->r;
root->r = nullptr;
root->update();
X lprod = Mono::op(prod, root->prod);
root->r = tmp;
root->update();
if (check(lprod)) {
prod = lprod;
last_ok = root;
root = root->r;
} else {
root = root->l;
}
}
splay(last, true);
return last_ok;
}
};
#line 2 "ds/splaytree/splaytree_acted_monoid.hpp"
namespace SplayTreeNodes {
template <typename ActedMonoid>
struct Node_AM {
using Monoid_A = typename ActedMonoid::Monoid_A;
using Monoid_X = typename ActedMonoid::Monoid_X;
using A = typename Monoid_A::value_type;
using X = typename Monoid_X::value_type;
using value_type = X;
using operator_type = A;
using np = Node_AM *;
np p, l, r;
X x, prod;
A lazy;
u32 size;
bool rev;
static void new_node(np n, const X &x) {
n->p = n->l = n->r = nullptr;
n->x = n->prod = x;
n->lazy = Monoid_A::unit();
n->size = 1;
n->rev = 0;
}
void update() {
size = 1;
prod = x;
if (l) {
size += l->size;
prod = Monoid_X::op(l->prod, prod);
}
if (r) {
size += r->size;
prod = Monoid_X::op(prod, r->prod);
}
}
void prop() {
if (lazy != Monoid_A::unit()) {
if (l) { l->apply(lazy); }
if (r) { r->apply(lazy); }
lazy = Monoid_A::unit();
}
if (rev) {
if (l) { l->reverse(); }
if (r) { r->reverse(); }
rev = 0;
}
}
// update, prop 以外で呼ばれるものは、splay 後であることが想定されている。
// したがってその時点で update, prop 済であることを仮定してよい。
X get() { return x; }
void set(const X &xx) {
x = xx;
update();
}
void multiply(const X &xx) {
x = Monoid_X::op(x, xx);
update();
}
void apply(const A &a) {
x = ActedMonoid::act(x, a, 1);
prod = ActedMonoid::act(prod, a, size);
lazy = Monoid_A::op(lazy, a);
}
void reverse() {
swap(l, r);
rev ^= 1;
}
};
template <typename ActedMonoid>
using SplayTree_ActedMonoid = SplayTree<Node_AM<ActedMonoid>>;
} // namespace SplayTreeNodes
using SplayTreeNodes::SplayTree_ActedMonoid;
#line 8 "test/1_mytest/splay_am.test.cpp"
using mint = modint998;
void test() {
using AM = ActedMonoid_Sum_Add<int>;
FOR(1000) {
int N = RNG(1, 10);
int Q = RNG(1, 1000);
SplayTree_ActedMonoid<AM> X(N);
vc<int> A(N);
FOR(i, N) A[i] = RNG(1, 10);
auto root = X.new_node(A);
FOR(Q) {
int t = RNG(0, 7);
if (t == 0) {
vc<int> B = X.get_all(root);
FOR(i, N) assert(A[i] == B[i]);
}
if (t == 1) {
int i = RNG(0, N);
assert(A[i] == X.get(root, i));
}
if (t == 2) {
int i = RNG(0, N);
int x = RNG(1, 10);
X.set(root, i, x);
A[i] = x;
}
if (t == 3) {
int i = RNG(0, N);
int x = RNG(1, 10);
X.multiply(root, i, x);
A[i] += x;
}
if (t == 4) {
int L = RNG(0, N);
int R = RNG(0, N);
if (L > R) swap(L, R);
++R;
int sm = 0;
FOR(i, L, R) sm += A[i];
assert(X.prod(root, L, R) == sm);
}
if (t == 5) {
int L = RNG(0, N);
int R = RNG(0, N);
if (L > R) swap(L, R);
++R;
X.reverse(root, L, R);
reverse(A.begin() + L, A.begin() + R);
}
if (t == 6) {
int L = RNG(0, N);
int R = RNG(0, N);
if (L > R) swap(L, R);
int a = RNG(1, 10);
++R;
FOR(i, L, R) A[i] += a;
X.apply(root, L, R, a);
}
}
}
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
test();
solve();
return 0;
}