library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub maspypy/library

:heavy_check_mark: test/1_mytest/rbst_monoid_persistent.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#include "my_template.hpp"
#include "alg/monoid/assign.hpp"
#include "mod/modint.hpp"
#include "ds/randomized_bst/rbst_monoid.hpp"
#include "random/base.hpp"

using mint = modint998;

void test() {
  using Mono = Monoid_Assign<int, -1>;
  RBST_Monoid<Mono, true> X(10000);
  using np = decltype(X)::np;

  FOR(1000) {
    X.reset();
    int N = RNG(1, 20);
    int Q = RNG(1, 1000);
    vvc<int> AA(1);
    FOR(i, N) AA[0].eb(RNG(0, 100));
    vc<np> roots = {X.new_node(AA[0])};

    FOR(Q) {
      vc<int> cand = {0, 1, 2, 3, 4, 5};
      int t = cand[RNG(0, len(cand))];
      int frm = RNG(0, len(AA));
      vc<int> A = AA[frm];
      np root = roots[frm];
      if (t == 0) {
        int i = RNG(0, N);
        assert(A[i] == X.get(root, i));
      }
      if (t == 1) {
        int i = RNG(0, N);
        int x = RNG(0, 100);
        root = X.set(root, i, x);
        A[i] = x;
      }
      if (t == 2) {
        int i = RNG(0, N);
        int x = RNG(0, 100);
        root = X.multiply(root, i, x);
        A[i] = Mono::op(A[i], x);
      }
      if (t == 3) {
        int L = RNG(0, N);
        int R = RNG(0, N);
        if (L > R) swap(L, R);
        ++R;
        vc<int> B = {A.begin() + L, A.begin() + R};
        assert(X.prod(root, L, R) == B.back());
      }
      if (t == 4) {
        int L = RNG(0, N);
        int R = RNG(0, N);
        if (L > R) swap(L, R);
        ++R;
        root = X.reverse(root, L, R);
        reverse(A.begin() + L, A.begin() + R);
      }
      if (t == 5) {
        vc<int> B = X.get_all(root);
        assert(A == B);
      }
      AA.eb(A);
      roots.eb(root);
    }
  }
}

void solve() {
  int a, b;
  cin >> a >> b;
  cout << a + b << "\n";
}

signed main() {
  test();
  solve();

  return 0;
}
#line 1 "test/1_mytest/rbst_monoid_persistent.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
  vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T kth_bit(int k) {
  return T(1) << k;
}
template <typename T>
bool has_kth_bit(T x, int k) {
  return x >> k & 1;
}

template <typename UINT>
struct all_bit {
  struct iter {
    UINT s;
    iter(UINT s) : s(s) {}
    int operator*() const { return lowbit(s); }
    iter &operator++() {
      s &= s - 1;
      return *this;
    }
    bool operator!=(const iter) const { return s != 0; }
  };
  UINT s;
  all_bit(UINT s) : s(s) {}
  iter begin() const { return iter(s); }
  iter end() const { return iter(0); }
};

template <typename UINT>
struct all_subset {
  static_assert(is_unsigned<UINT>::value);
  struct iter {
    UINT s, t;
    bool ed;
    iter(UINT s) : s(s), t(s), ed(0) {}
    int operator*() const { return s ^ t; }
    iter &operator++() {
      (t == 0 ? ed = 1 : t = (t - 1) & s);
      return *this;
    }
    bool operator!=(const iter) const { return !ed; }
  };
  UINT s;
  all_subset(UINT s) : s(s) {}
  iter begin() const { return iter(s); }
  iter end() const { return iter(0); }
};

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
  vc<T> &res = first;
  (res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 2 "alg/monoid/assign.hpp"

template <typename X, int none_val>
struct Monoid_Assign {
  using value_type = X;
  static X op(X x, X y) { return (y == X(none_val) ? x : y); }
  static constexpr X unit() { return X(none_val); }
  static constexpr bool commute = false;
};
#line 2 "mod/modint_common.hpp"

struct has_mod_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};

template <typename mint>
mint inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {0, 1};
  assert(0 <= n);
  if (n >= mod) n %= mod;
  while (len(dat) <= n) {
    int k = len(dat);
    int q = (mod + k - 1) / k;
    dat.eb(dat[k * q - mod] * mint::raw(q));
  }
  return dat[n];
}

template <typename mint>
mint fact(int n) {
  static const int mod = mint::get_mod();
  assert(0 <= n && n < mod);
  static vector<mint> dat = {1, 1};
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
  return dat[n];
}

template <typename mint>
mint fact_inv(int n) {
  static vector<mint> dat = {1, 1};
  if (n < 0) return mint(0);
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
  return dat[n];
}

template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
  return (mint(1) * ... * fact_inv<mint>(xs));
}

template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
  return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}

template <typename mint>
mint C_dense(int n, int k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  static vvc<mint> C;
  static int H = 0, W = 0;
  auto calc = [&](int i, int j) -> mint {
    if (i == 0) return (j == 0 ? mint(1) : mint(0));
    return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
  };
  if (W <= k) {
    FOR(i, H) {
      C[i].resize(k + 1);
      FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
    }
    W = k + 1;
  }
  if (H <= n) {
    C.resize(n + 1);
    FOR(i, H, n + 1) {
      C[i].resize(W);
      FOR(j, W) { C[i][j] = calc(i, j); }
    }
    H = n + 1;
  }
  return C[n][k];
}

template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  if constexpr (dense) return C_dense<mint>(n, k);
  if constexpr (!large) return multinomial<mint>(n, k, n - k);
  k = min(k, n - k);
  mint x(1);
  FOR(i, k) x *= mint(n - i);
  return x * fact_inv<mint>(k);
}

template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
  assert(n >= 0);
  assert(0 <= k && k <= n);
  if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
  return mint(1) / C<mint, 1>(n, k);
}

// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
  assert(n >= 0);
  if (d < 0) return mint(0);
  if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
  return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "mod/modint.hpp"

template <int mod>
struct modint {
  static constexpr u32 umod = u32(mod);
  static_assert(umod < u32(1) << 31);
  u32 val;

  static modint raw(u32 v) {
    modint x;
    x.val = v;
    return x;
  }
  constexpr modint() : val(0) {}
  constexpr modint(u32 x) : val(x % umod) {}
  constexpr modint(u64 x) : val(x % umod) {}
  constexpr modint(u128 x) : val(x % umod) {}
  constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
  bool operator<(const modint &other) const { return val < other.val; }
  modint &operator+=(const modint &p) {
    if ((val += p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator-=(const modint &p) {
    if ((val += umod - p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator*=(const modint &p) {
    val = u64(val) * p.val % umod;
    return *this;
  }
  modint &operator/=(const modint &p) {
    *this *= p.inverse();
    return *this;
  }
  modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
  modint operator+(const modint &p) const { return modint(*this) += p; }
  modint operator-(const modint &p) const { return modint(*this) -= p; }
  modint operator*(const modint &p) const { return modint(*this) *= p; }
  modint operator/(const modint &p) const { return modint(*this) /= p; }
  bool operator==(const modint &p) const { return val == p.val; }
  bool operator!=(const modint &p) const { return val != p.val; }
  modint inverse() const {
    int a = val, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return modint(u);
  }
  modint pow(ll n) const {
    assert(n >= 0);
    modint ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  static constexpr int get_mod() { return mod; }
  // (n, r), r は 1 の 2^n 乗根
  static constexpr pair<int, int> ntt_info() {
    if (mod == 120586241) return {20, 74066978};
    if (mod == 167772161) return {25, 17};
    if (mod == 469762049) return {26, 30};
    if (mod == 754974721) return {24, 362};
    if (mod == 880803841) return {23, 211};
    if (mod == 943718401) return {22, 663003469};
    if (mod == 998244353) return {23, 31};
    if (mod == 1004535809) return {21, 582313106};
    if (mod == 1012924417) return {21, 368093570};
    return {-1, -1};
  }
  static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};

#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
  fastio::rd(x.val);
  x.val %= mod;
  // assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
  fastio::wt(x.val);
}
#endif

using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 1 "ds/randomized_bst/rbst_monoid.hpp"
template <typename Monoid, bool PERSISTENT>
struct RBST_Monoid {
  using X = typename Monoid::value_type;

  struct Node {
    Node *l, *r;
    X x, prod, rev_prod; // rev 反映済
    u32 size;
    bool rev;
  };

  int NODES;
  Node *pool;
  int pid;
  using np = Node *;

  RBST_Monoid(int NODES) : NODES(NODES), pid(0) { pool = new Node[NODES]; }
  ~RBST_Monoid() { delete[] pool; }

  void reset() { pid = 0; }

  np new_node(const X &x) {
    pool[pid].l = pool[pid].r = nullptr;
    pool[pid].x = x;
    pool[pid].prod = x;
    pool[pid].rev_prod = x;
    pool[pid].size = 1;
    pool[pid].rev = 0;
    return &(pool[pid++]);
  }

  np new_node(const vc<X> &dat) {
    auto dfs = [&](auto &dfs, u32 l, u32 r) -> np {
      if (l == r) return nullptr;
      if (r == l + 1) return new_node(dat[l]);
      u32 m = (l + r) / 2;
      np l_root = dfs(dfs, l, m);
      np r_root = dfs(dfs, m + 1, r);
      np root = new_node(dat[m]);
      root->l = l_root, root->r = r_root;
      update(root);
      return root;
    };
    return dfs(dfs, 0, len(dat));
  }

  np copy_node(np &n) {
    if (!n || !PERSISTENT) return n;
    pool[pid].l = n->l, pool[pid].r = n->r;
    pool[pid].x = n->x;
    pool[pid].prod = n->prod;
    pool[pid].rev_prod = n->rev_prod;
    pool[pid].size = n->size;
    pool[pid].rev = n->rev;
    return &(pool[pid++]);
  }

  np merge(np l_root, np r_root) { return merge_rec(l_root, r_root); }
  np merge3(np a, np b, np c) { return merge(merge(a, b), c); }
  np merge4(np a, np b, np c, np d) { return merge(merge(merge(a, b), c), d); }
  pair<np, np> split(np root, u32 k) {
    if (!root) {
      assert(k == 0);
      return {nullptr, nullptr};
    }
    assert(0 <= k && k <= root->size);
    return split_rec(root, k);
  }
  tuple<np, np, np> split3(np root, u32 l, u32 r) {
    np nm, nr;
    tie(root, nr) = split(root, r);
    tie(root, nm) = split(root, l);
    return {root, nm, nr};
  }
  tuple<np, np, np, np> split4(np root, u32 i, u32 j, u32 k) {
    np d;
    tie(root, d) = split(root, k);
    auto [a, b, c] = split3(root, i, j);
    return {a, b, c, d};
  }

  X prod(np root, u32 l, u32 r) {
    if (l == r) return Monoid::unit();
    return prod_rec(root, l, r, false);
  }
  X prod(np root) { return (root ? root->prod : Monoid::unit()); }

  np reverse(np root, u32 l, u32 r) {
    assert(0 <= l && l <= r && r <= root->size);
    if (r - l <= 1) return root;
    auto [nl, nm, nr] = split3(root, l, r);
    nm->rev ^= 1;
    swap(nm->l, nm->r);
    swap(nm->prod, nm->rev_prod);
    return merge3(nl, nm, nr);
  }

  np set(np root, u32 k, const X &x) { return set_rec(root, k, x); }
  np multiply(np root, u32 k, const X &x) { return multiply_rec(root, k, x); }
  X get(np root, u32 k) { return get_rec(root, k, false); }

  vc<X> get_all(np root) {
    vc<X> res;
    auto dfs = [&](auto &dfs, np root, bool rev) -> void {
      if (!root) return;
      dfs(dfs, (rev ? root->r : root->l), rev ^ root->rev);
      res.eb(root->x);
      dfs(dfs, (rev ? root->l : root->r), rev ^ root->rev);
    };
    dfs(dfs, root, 0);
    return res;
  }

  template <typename F>
  pair<np, np> split_max_right(np root, const F check) {
    assert(check(Monoid::unit()));
    X x = Monoid::unit();
    return split_max_right_rec(root, check, x);
  }

private:
  inline u32 xor128() {
    static u32 x = 123456789;
    static u32 y = 362436069;
    static u32 z = 521288629;
    static u32 w = 88675123;
    u32 t = x ^ (x << 11);
    x = y;
    y = z;
    z = w;
    return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
  }

  void prop(np c) {
    // 自身をコピーする必要はない。
    // 子をコピーする必要がある。複数の親を持つ可能性があるため。
    if (c->rev) {
      if (c->l) {
        c->l = copy_node(c->l);
        c->l->rev ^= 1;
        swap(c->l->l, c->l->r);
        swap(c->l->prod, c->l->rev_prod);
      }
      if (c->r) {
        c->r = copy_node(c->r);
        c->r->rev ^= 1;
        swap(c->r->l, c->r->r);
        swap(c->r->prod, c->r->rev_prod);
      }
      c->rev = 0;
    }
  }

  void update(np c) {
    // データを保ったまま正常化するだけなので、コピー不要
    c->size = 1;
    c->prod = c->rev_prod = c->x;
    if (c->l) {
      c->size += c->l->size;
      c->prod = Monoid::op(c->l->prod, c->prod);
      c->rev_prod = Monoid::op(c->rev_prod, c->l->rev_prod);
    }
    if (c->r) {
      c->size += c->r->size;
      c->prod = Monoid::op(c->prod, c->r->prod);
      c->rev_prod = Monoid::op(c->r->rev_prod, c->rev_prod);
    }
  }

  np merge_rec(np l_root, np r_root) {
    if (!l_root) return r_root;
    if (!r_root) return l_root;
    u32 sl = l_root->size, sr = r_root->size;
    if (xor128() % (sl + sr) < sl) {
      prop(l_root);
      l_root = copy_node(l_root);
      l_root->r = merge_rec(l_root->r, r_root);
      update(l_root);
      return l_root;
    }
    prop(r_root);
    r_root = copy_node(r_root);
    r_root->l = merge_rec(l_root, r_root->l);
    update(r_root);
    return r_root;
  }

  pair<np, np> split_rec(np root, u32 k) {
    if (!root) return {nullptr, nullptr};
    prop(root);
    u32 sl = (root->l ? root->l->size : 0);
    if (k <= sl) {
      auto [nl, nr] = split_rec(root->l, k);
      root = copy_node(root);
      root->l = nr;
      update(root);
      return {nl, root};
    }
    auto [nl, nr] = split_rec(root->r, k - (1 + sl));
    root = copy_node(root);
    root->r = nl;
    update(root);
    return {root, nr};
  }

  np set_rec(np root, u32 k, const X &x) {
    if (!root) return root;
    prop(root);
    u32 sl = (root->l ? root->l->size : 0);
    if (k < sl) {
      root = copy_node(root);
      root->l = set_rec(root->l, k, x);
      update(root);
      return root;
    }
    if (k == sl) {
      root = copy_node(root);
      root->x = x;
      update(root);
      return root;
    }
    root = copy_node(root);
    root->r = set_rec(root->r, k - (1 + sl), x);
    update(root);
    return root;
  }

  np multiply_rec(np root, u32 k, const X &x) {
    if (!root) return root;
    prop(root);
    u32 sl = (root->l ? root->l->size : 0);
    if (k < sl) {
      root = copy_node(root);
      root->l = multiply_rec(root->l, k, x);
      update(root);
      return root;
    }
    if (k == sl) {
      root = copy_node(root);
      root->x = Monoid::op(root->x, x);
      update(root);
      return root;
    }
    root = copy_node(root);
    root->r = multiply_rec(root->r, k - (1 + sl), x);
    update(root);
    return root;
  }

  X prod_rec(np root, u32 l, u32 r, bool rev) {
    if (l == 0 && r == root->size) { return (rev ? root->rev_prod : root->prod); }
    np left = (rev ? root->r : root->l);
    np right = (rev ? root->l : root->r);
    u32 sl = (left ? left->size : 0);
    X res = Monoid::unit();
    if (l < sl) {
      X y = prod_rec(left, l, min(r, sl), rev ^ root->rev);
      res = Monoid::op(res, y);
    }
    if (l <= sl && sl < r) res = Monoid::op(res, root->x);
    u32 k = 1 + sl;
    if (k < r) {
      X y = prod_rec(right, max(k, l) - k, r - k, rev ^ root->rev);
      res = Monoid::op(res, y);
    }
    return res;
  }

  X get_rec(np root, u32 k, bool rev) {
    np left = (rev ? root->r : root->l);
    np right = (rev ? root->l : root->r);
    u32 sl = (left ? left->size : 0);
    if (k == sl) return root->x;
    rev ^= root->rev;
    if (k < sl) return get_rec(left, k, rev);
    return get_rec(right, k - (1 + sl), rev);
  }

  template <typename F>
  pair<np, np> split_max_right_rec(np root, const F &check, X &x) {
    if (!root) return {nullptr, nullptr};
    prop(root);
    root = copy_node(root);
    X y = Monoid::op(x, root->prod);
    if (check(y)) {
      x = y;
      return {root, nullptr};
    }
    np left = root->l, right = root->r;
    if (left) {
      X y = Monoid::op(x, root->l->prod);
      if (!check(y)) {
        auto [n1, n2] = split_max_right_rec(left, check, x);
        root->l = n2;
        update(root);
        return {n1, root};
      }
      x = y;
    }
    y = Monoid::op(x, root->x);
    if (!check(y)) {
      root->l = nullptr;
      update(root);
      return {left, root};
    }
    x = y;
    auto [n1, n2] = split_max_right_rec(right, check, x);
    root->r = n1;
    update(root);
    return {root, n2};
  }
};
#line 2 "random/base.hpp"

u64 RNG_64() {
  static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL;
  x_ ^= x_ << 7;
  return x_ ^= x_ >> 9;
}

u64 RNG(u64 lim) { return RNG_64() % lim; }

ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 7 "test/1_mytest/rbst_monoid_persistent.test.cpp"

using mint = modint998;

void test() {
  using Mono = Monoid_Assign<int, -1>;
  RBST_Monoid<Mono, true> X(10000);
  using np = decltype(X)::np;

  FOR(1000) {
    X.reset();
    int N = RNG(1, 20);
    int Q = RNG(1, 1000);
    vvc<int> AA(1);
    FOR(i, N) AA[0].eb(RNG(0, 100));
    vc<np> roots = {X.new_node(AA[0])};

    FOR(Q) {
      vc<int> cand = {0, 1, 2, 3, 4, 5};
      int t = cand[RNG(0, len(cand))];
      int frm = RNG(0, len(AA));
      vc<int> A = AA[frm];
      np root = roots[frm];
      if (t == 0) {
        int i = RNG(0, N);
        assert(A[i] == X.get(root, i));
      }
      if (t == 1) {
        int i = RNG(0, N);
        int x = RNG(0, 100);
        root = X.set(root, i, x);
        A[i] = x;
      }
      if (t == 2) {
        int i = RNG(0, N);
        int x = RNG(0, 100);
        root = X.multiply(root, i, x);
        A[i] = Mono::op(A[i], x);
      }
      if (t == 3) {
        int L = RNG(0, N);
        int R = RNG(0, N);
        if (L > R) swap(L, R);
        ++R;
        vc<int> B = {A.begin() + L, A.begin() + R};
        assert(X.prod(root, L, R) == B.back());
      }
      if (t == 4) {
        int L = RNG(0, N);
        int R = RNG(0, N);
        if (L > R) swap(L, R);
        ++R;
        root = X.reverse(root, L, R);
        reverse(A.begin() + L, A.begin() + R);
      }
      if (t == 5) {
        vc<int> B = X.get_all(root);
        assert(A == B);
      }
      AA.eb(A);
      roots.eb(root);
    }
  }
}

void solve() {
  int a, b;
  cin >> a >> b;
  cout << a + b << "\n";
}

signed main() {
  test();
  solve();

  return 0;
}
Back to top page