This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb" #include "my_template.hpp" #include "alg/monoid/add.hpp" #include "mod/modint.hpp" #include "ds/randomized_bst/rbst_commutative_monoid.hpp" #include "random/base.hpp" using mint = modint998; void test() { using Mono = Monoid_Add<int>; RBST_CommutativeMonoid<Mono, true> X(10000); using np = decltype(X)::np; FOR(1000) { X.reset(); int N = RNG(1, 20); int Q = RNG(1, 1000); vvc<int> AA(1); FOR(i, N) AA[0].eb(RNG(0, 100)); vc<np> roots = {X.new_node(AA[0])}; FOR(Q) { vc<int> cand = {0, 1, 2, 3, 4, 5}; int t = cand[RNG(0, len(cand))]; int frm = RNG(0, len(AA)); vc<int> A = AA[frm]; np root = roots[frm]; if (t == 0) { int i = RNG(0, N); assert(A[i] == X.get(root, i)); } if (t == 1) { int i = RNG(0, N); int x = RNG(0, 100); root = X.set(root, i, x); A[i] = x; } if (t == 2) { int i = RNG(0, N); int x = RNG(0, 100); root = X.multiply(root, i, x); A[i] = Mono::op(A[i], x); } if (t == 3) { int L = RNG(0, N); int R = RNG(0, N); if (L > R) swap(L, R); ++R; vc<int> B = {A.begin() + L, A.begin() + R}; assert(X.prod(root, L, R) == SUM<int>(B)); } if (t == 4) { int L = RNG(0, N); int R = RNG(0, N); if (L > R) swap(L, R); ++R; root = X.reverse(root, L, R); reverse(A.begin() + L, A.begin() + R); } if (t == 5) { vc<int> B = X.get_all(root); assert(A == B); } AA.eb(A); roots.eb(root); } } } void solve() { int a, b; cin >> a >> b; cout << a + b << "\n"; } signed main() { test(); solve(); return 0; }
#line 1 "test/1_mytest/rbst_commutative_persistent.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/aplusb" #line 1 "my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else // https://codeforces.com/blog/entry/96344 #pragma GCC optimize("Ofast,unroll-loops") // いまの CF だとこれ入れると動かない? // #pragma GCC target("avx2,popcnt") #include <bits/stdc++.h> using namespace std; using ll = long long; using u8 = uint8_t; using u16 = uint16_t; using u32 = uint32_t; using u64 = uint64_t; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'010'000'000; template <> constexpr ll infty<ll> = 2'020'000'000'000'000'000; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); } int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); } int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); } int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T kth_bit(int k) { return T(1) << k; } template <typename T> bool has_kth_bit(T x, int k) { return x >> k & 1; } template <typename UINT> struct all_bit { struct iter { UINT s; iter(UINT s) : s(s) {} int operator*() const { return lowbit(s); } iter &operator++() { s &= s - 1; return *this; } bool operator!=(const iter) const { return s != 0; } }; UINT s; all_bit(UINT s) : s(s) {} iter begin() const { return iter(s); } iter end() const { return iter(0); } }; template <typename UINT> struct all_subset { static_assert(is_unsigned<UINT>::value); struct iter { UINT s, t; bool ed; iter(UINT s) : s(s), t(s), ed(0) {} int operator*() const { return s ^ t; } iter &operator++() { (t == 0 ? ed = 1 : t = (t - 1) & s); return *this; } bool operator!=(const iter) const { return !ed; } }; UINT s; all_subset(UINT s) : s(s) {} iter begin() const { return iter(s); } iter end() const { return iter(0); } }; template <typename T> T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); } template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); } template <typename T> pair<T, T> divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } template <typename T, typename... Vectors> void concat(vc<T> &first, const Vectors &... others) { vc<T> &res = first; (res.insert(res.end(), others.begin(), others.end()), ...); } #endif #line 2 "alg/monoid/add.hpp" template <typename E> struct Monoid_Add { using X = E; using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return x + y; } static constexpr X inverse(const X &x) noexcept { return -x; } static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; } static constexpr X unit() { return X(0); } static constexpr bool commute = true; }; #line 2 "mod/modint_common.hpp" struct has_mod_impl { template <class T> static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {}; template <typename mint> mint inv(int n) { static const int mod = mint::get_mod(); static vector<mint> dat = {0, 1}; assert(0 <= n); if (n >= mod) n %= mod; while (len(dat) <= n) { int k = len(dat); int q = (mod + k - 1) / k; dat.eb(dat[k * q - mod] * mint::raw(q)); } return dat[n]; } template <typename mint> mint fact(int n) { static const int mod = mint::get_mod(); assert(0 <= n && n < mod); static vector<mint> dat = {1, 1}; while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat))); return dat[n]; } template <typename mint> mint fact_inv(int n) { static vector<mint> dat = {1, 1}; if (n < 0) return mint(0); while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat))); return dat[n]; } template <class mint, class... Ts> mint fact_invs(Ts... xs) { return (mint(1) * ... * fact_inv<mint>(xs)); } template <typename mint, class Head, class... Tail> mint multinomial(Head &&head, Tail &&... tail) { return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...); } template <typename mint> mint C_dense(int n, int k) { assert(n >= 0); if (k < 0 || n < k) return 0; static vvc<mint> C; static int H = 0, W = 0; auto calc = [&](int i, int j) -> mint { if (i == 0) return (j == 0 ? mint(1) : mint(0)); return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0); }; if (W <= k) { FOR(i, H) { C[i].resize(k + 1); FOR(j, W, k + 1) { C[i][j] = calc(i, j); } } W = k + 1; } if (H <= n) { C.resize(n + 1); FOR(i, H, n + 1) { C[i].resize(W); FOR(j, W) { C[i][j] = calc(i, j); } } H = n + 1; } return C[n][k]; } template <typename mint, bool large = false, bool dense = false> mint C(ll n, ll k) { assert(n >= 0); if (k < 0 || n < k) return 0; if constexpr (dense) return C_dense<mint>(n, k); if constexpr (!large) return multinomial<mint>(n, k, n - k); k = min(k, n - k); mint x(1); FOR(i, k) x *= mint(n - i); return x * fact_inv<mint>(k); } template <typename mint, bool large = false> mint C_inv(ll n, ll k) { assert(n >= 0); assert(0 <= k && k <= n); if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k); return mint(1) / C<mint, 1>(n, k); } // [x^d](1-x)^{-n} template <typename mint, bool large = false, bool dense = false> mint C_negative(ll n, ll d) { assert(n >= 0); if (d < 0) return mint(0); if (n == 0) { return (d == 0 ? mint(1) : mint(0)); } return C<mint, large, dense>(n + d - 1, d); } #line 3 "mod/modint.hpp" template <int mod> struct modint { static constexpr u32 umod = u32(mod); static_assert(umod < u32(1) << 31); u32 val; static modint raw(u32 v) { modint x; x.val = v; return x; } constexpr modint() : val(0) {} constexpr modint(u32 x) : val(x % umod) {} constexpr modint(u64 x) : val(x % umod) {} constexpr modint(u128 x) : val(x % umod) {} constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){}; bool operator<(const modint &other) const { return val < other.val; } modint &operator+=(const modint &p) { if ((val += p.val) >= umod) val -= umod; return *this; } modint &operator-=(const modint &p) { if ((val += umod - p.val) >= umod) val -= umod; return *this; } modint &operator*=(const modint &p) { val = u64(val) * p.val % umod; return *this; } modint &operator/=(const modint &p) { *this *= p.inverse(); return *this; } modint operator-() const { return modint::raw(val ? mod - val : u32(0)); } modint operator+(const modint &p) const { return modint(*this) += p; } modint operator-(const modint &p) const { return modint(*this) -= p; } modint operator*(const modint &p) const { return modint(*this) *= p; } modint operator/(const modint &p) const { return modint(*this) /= p; } bool operator==(const modint &p) const { return val == p.val; } bool operator!=(const modint &p) const { return val != p.val; } modint inverse() const { int a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return modint(u); } modint pow(ll n) const { assert(n >= 0); modint ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } static constexpr int get_mod() { return mod; } // (n, r), r は 1 の 2^n 乗根 static constexpr pair<int, int> ntt_info() { if (mod == 120586241) return {20, 74066978}; if (mod == 167772161) return {25, 17}; if (mod == 469762049) return {26, 30}; if (mod == 754974721) return {24, 362}; if (mod == 880803841) return {23, 211}; if (mod == 943718401) return {22, 663003469}; if (mod == 998244353) return {23, 31}; if (mod == 1004535809) return {21, 582313106}; if (mod == 1012924417) return {21, 368093570}; return {-1, -1}; } static constexpr bool can_ntt() { return ntt_info().fi != -1; } }; #ifdef FASTIO template <int mod> void rd(modint<mod> &x) { fastio::rd(x.val); x.val %= mod; // assert(0 <= x.val && x.val < mod); } template <int mod> void wt(modint<mod> x) { fastio::wt(x.val); } #endif using modint107 = modint<1000000007>; using modint998 = modint<998244353>; #line 1 "ds/randomized_bst/rbst_commutative_monoid.hpp" template <typename CommutativeMonoid, bool PERSISTENT> struct RBST_CommutativeMonoid { using Monoid = CommutativeMonoid; using X = typename Monoid::value_type; static_assert(Monoid::commute); struct Node { Node *l, *r; X x, prod; // rev 反映済 u32 size; bool rev; }; const int NODES; Node *pool; int pid; using np = Node *; RBST_CommutativeMonoid(int NODES) : NODES(NODES), pid(0) { pool = new Node[NODES]; } ~RBST_CommutativeMonoid() { delete[] pool; } void reset() { pid = 0; } np new_node(const X &x) { pool[pid].l = pool[pid].r = nullptr; pool[pid].x = x; pool[pid].prod = x; pool[pid].size = 1; pool[pid].rev = 0; return &(pool[pid++]); } np new_node(const vc<X> &dat) { auto dfs = [&](auto &dfs, u32 l, u32 r) -> np { if (l == r) return nullptr; if (r == l + 1) return new_node(dat[l]); u32 m = (l + r) / 2; np l_root = dfs(dfs, l, m); np r_root = dfs(dfs, m + 1, r); np root = new_node(dat[m]); root->l = l_root, root->r = r_root; update(root); return root; }; return dfs(dfs, 0, len(dat)); } np copy_node(np &n) { if (!n || !PERSISTENT) return n; pool[pid].l = n->l, pool[pid].r = n->r; pool[pid].x = n->x; pool[pid].prod = n->prod; pool[pid].size = n->size; pool[pid].rev = n->rev; return &(pool[pid++]); } np merge(np l_root, np r_root) { return merge_rec(l_root, r_root); } np merge3(np a, np b, np c) { return merge(merge(a, b), c); } np merge4(np a, np b, np c, np d) { return merge(merge(merge(a, b), c), d); } pair<np, np> split(np root, u32 k) { if (!root) { assert(k == 0); return {nullptr, nullptr}; } assert(0 <= k && k <= root->size); return split_rec(root, k); } tuple<np, np, np> split3(np root, u32 l, u32 r) { np nm, nr; tie(root, nr) = split(root, r); tie(root, nm) = split(root, l); return {root, nm, nr}; } tuple<np, np, np, np> split4(np root, u32 i, u32 j, u32 k) { np d; tie(root, d) = split(root, k); auto [a, b, c] = split3(root, i, j); return {a, b, c, d}; } X prod(np root, u32 l, u32 r) { if (l == r) return Monoid::unit(); return prod_rec(root, l, r, false); } X prod(np root) { return (root ? root->prod : Monoid::unit()); } np reverse(np root, u32 l, u32 r) { assert(0 <= l && l <= r && r <= root->size); if (r - l <= 1) return root; auto [nl, nm, nr] = split3(root, l, r); nm->rev ^= 1; swap(nm->l, nm->r); return merge3(nl, nm, nr); } np set(np root, u32 k, const X &x) { return set_rec(root, k, x); } np multiply(np root, u32 k, const X &x) { return multiply_rec(root, k, x); } X get(np root, u32 k) { return get_rec(root, k, false); } vc<X> get_all(np root) { vc<X> res; auto dfs = [&](auto &dfs, np root, bool rev) -> void { if (!root) return; dfs(dfs, (rev ? root->r : root->l), rev ^ root->rev); res.eb(root->x); dfs(dfs, (rev ? root->l : root->r), rev ^ root->rev); }; dfs(dfs, root, 0); return res; } template <typename F> pair<np, np> split_max_right(np root, const F check) { assert(check(Monoid::unit())); X x = Monoid::unit(); return split_max_right_rec(root, check, x); } private: inline u32 xor128() { static u32 x = 123456789; static u32 y = 362436069; static u32 z = 521288629; static u32 w = 88675123; u32 t = x ^ (x << 11); x = y; y = z; z = w; return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); } void prop(np c) { // 自身をコピーする必要はない。 // 子をコピーする必要がある。複数の親を持つ可能性があるため。 if (c->rev) { if (c->l) { c->l = copy_node(c->l); c->l->rev ^= 1; swap(c->l->l, c->l->r); } if (c->r) { c->r = copy_node(c->r); c->r->rev ^= 1; swap(c->r->l, c->r->r); } c->rev = 0; } } void update(np c) { // データを保ったまま正常化するだけなので、コピー不要 c->size = 1; c->prod = c->x; if (c->l) { c->size += c->l->size; c->prod = Monoid::op(c->l->prod, c->prod); } if (c->r) { c->size += c->r->size; c->prod = Monoid::op(c->prod, c->r->prod); } } np merge_rec(np l_root, np r_root) { if (!l_root) return r_root; if (!r_root) return l_root; u32 sl = l_root->size, sr = r_root->size; if (xor128() % (sl + sr) < sl) { prop(l_root); l_root = copy_node(l_root); l_root->r = merge_rec(l_root->r, r_root); update(l_root); return l_root; } prop(r_root); r_root = copy_node(r_root); r_root->l = merge_rec(l_root, r_root->l); update(r_root); return r_root; } pair<np, np> split_rec(np root, u32 k) { if (!root) return {nullptr, nullptr}; prop(root); u32 sl = (root->l ? root->l->size : 0); if (k <= sl) { auto [nl, nr] = split_rec(root->l, k); root = copy_node(root); root->l = nr; update(root); return {nl, root}; } auto [nl, nr] = split_rec(root->r, k - (1 + sl)); root = copy_node(root); root->r = nl; update(root); return {root, nr}; } np set_rec(np root, u32 k, const X &x) { if (!root) return root; prop(root); u32 sl = (root->l ? root->l->size : 0); if (k < sl) { root = copy_node(root); root->l = set_rec(root->l, k, x); update(root); return root; } if (k == sl) { root = copy_node(root); root->x = x; update(root); return root; } root = copy_node(root); root->r = set_rec(root->r, k - (1 + sl), x); update(root); return root; } np multiply_rec(np root, u32 k, const X &x) { if (!root) return root; prop(root); u32 sl = (root->l ? root->l->size : 0); if (k < sl) { root = copy_node(root); root->l = multiply_rec(root->l, k, x); update(root); return root; } if (k == sl) { root = copy_node(root); root->x = Monoid::op(root->x, x); update(root); return root; } root = copy_node(root); root->r = multiply_rec(root->r, k - (1 + sl), x); update(root); return root; } X prod_rec(np root, u32 l, u32 r, bool rev) { if (l == 0 && r == root->size) return root->prod; np left = (rev ? root->r : root->l); np right = (rev ? root->l : root->r); u32 sl = (left ? left->size : 0); X res = Monoid::unit(); if (l < sl) { X y = prod_rec(left, l, min(r, sl), rev ^ root->rev); res = Monoid::op(res, y); } if (l <= sl && sl < r) res = Monoid::op(res, root->x); u32 k = 1 + sl; if (k < r) { X y = prod_rec(right, max(k, l) - k, r - k, rev ^ root->rev); res = Monoid::op(res, y); } return res; } X get_rec(np root, u32 k, bool rev) { np left = (rev ? root->r : root->l); np right = (rev ? root->l : root->r); u32 sl = (left ? left->size : 0); if (k == sl) return root->x; rev ^= root->rev; if (k < sl) return get_rec(left, k, rev); return get_rec(right, k - (1 + sl), rev); } template <typename F> pair<np, np> split_max_right_rec(np root, const F &check, X &x) { if (!root) return {nullptr, nullptr}; prop(root); root = copy_node(root); X y = Monoid::op(x, root->prod); if (check(y)) { x = y; return {root, nullptr}; } np left = root->l, right = root->r; if (left) { X y = Monoid::op(x, root->l->prod); if (!check(y)) { auto [n1, n2] = split_max_right_rec(left, check, x); root->l = n2; update(root); return {n1, root}; } x = y; } y = Monoid::op(x, root->x); if (!check(y)) { root->l = nullptr; update(root); return {left, root}; } x = y; auto [n1, n2] = split_max_right_rec(right, check, x); root->r = n1; update(root); return {root, n2}; } }; #line 2 "random/base.hpp" u64 RNG_64() { static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL; x_ ^= x_ << 7; return x_ ^= x_ >> 9; } u64 RNG(u64 lim) { return RNG_64() % lim; } ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); } #line 7 "test/1_mytest/rbst_commutative_persistent.test.cpp" using mint = modint998; void test() { using Mono = Monoid_Add<int>; RBST_CommutativeMonoid<Mono, true> X(10000); using np = decltype(X)::np; FOR(1000) { X.reset(); int N = RNG(1, 20); int Q = RNG(1, 1000); vvc<int> AA(1); FOR(i, N) AA[0].eb(RNG(0, 100)); vc<np> roots = {X.new_node(AA[0])}; FOR(Q) { vc<int> cand = {0, 1, 2, 3, 4, 5}; int t = cand[RNG(0, len(cand))]; int frm = RNG(0, len(AA)); vc<int> A = AA[frm]; np root = roots[frm]; if (t == 0) { int i = RNG(0, N); assert(A[i] == X.get(root, i)); } if (t == 1) { int i = RNG(0, N); int x = RNG(0, 100); root = X.set(root, i, x); A[i] = x; } if (t == 2) { int i = RNG(0, N); int x = RNG(0, 100); root = X.multiply(root, i, x); A[i] = Mono::op(A[i], x); } if (t == 3) { int L = RNG(0, N); int R = RNG(0, N); if (L > R) swap(L, R); ++R; vc<int> B = {A.begin() + L, A.begin() + R}; assert(X.prod(root, L, R) == SUM<int>(B)); } if (t == 4) { int L = RNG(0, N); int R = RNG(0, N); if (L > R) swap(L, R); ++R; root = X.reverse(root, L, R); reverse(A.begin() + L, A.begin() + R); } if (t == 5) { vc<int> B = X.get_all(root); assert(A == B); } AA.eb(A); roots.eb(root); } } } void solve() { int a, b; cin >> a >> b; cout << a + b << "\n"; } signed main() { test(); solve(); return 0; }