library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub maspypy/library

:heavy_check_mark: test/1_mytest/range_closest_pair.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#include "my_template.hpp"
#include "random/base.hpp"
#include "geo/range_closest_pair_query.hpp"

void test() {
  FOR(N, 2, 100) {
    FOR(Q, 1, 100) {
      vc<pair<int, int>> point(N), query(Q);
      FOR(i, N) {
        int x = RNG(0, 20);
        int y = RNG(0, 20);
        point[i] = {x, y};
      }
      FOR(q, Q) {
        while (1) {
          int L = RNG(0, N);
          int R = RNG(0, N);
          if (L + 1 <= R) {
            query[q] = {L, R + 1};
            break;
          }
        }
      }
      Range_Closest_Pair_Query X;
      for (auto&& [a, b]: point) X.add_point(a, b);
      for (auto&& [l, r]: query) X.add_query(l, r);
      vi ANS = X.calc();
      FOR(q, Q) {
        ll ans = infty<ll>;
        auto [L, R] = query[q];
        FOR(i, L, R) FOR(j, L, R) {
          if (i == j) continue;
          auto [x1, y1] = point[i];
          auto [x2, y2] = point[j];
          ll dx = x1 - x2, dy = y1 - y2;
          chmin(ans, dx * dx + dy * dy);
        }
        assert(ans == ANS[q]);
      }
    }
  }
}

void solve() {
  int a, b;
  cin >> a >> b;
  cout << a + b << "\n";
}

signed main() {
  test();
  solve();
  return 0;
}
#line 1 "test/1_mytest/range_closest_pair.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
  vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
  vc<T> &res = first;
  (res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 2 "random/base.hpp"

u64 RNG_64() {
  static uint64_t x_
      = uint64_t(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL;
  x_ ^= x_ << 7;
  return x_ ^= x_ >> 9;
}

u64 RNG(u64 lim) { return RNG_64() % lim; }

ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "ds/hashmap.hpp"

// u64 -> Val

template <typename Val>
struct HashMap {
  // n は入れたいものの個数で ok

  HashMap(u32 n = 0) { build(n); }
  void build(u32 n) {
    u32 k = 8;
    while (k < n * 2) k *= 2;
    cap = k / 2, mask = k - 1;
    key.resize(k), val.resize(k), used.assign(k, 0);
  }

  // size を保ったまま. size=0 にするときは build すること.

  void clear() {
    used.assign(len(used), 0);
    cap = (mask + 1) / 2;
  }
  int size() { return len(used) / 2 - cap; }

  int index(const u64& k) {
    int i = 0;
    for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {}
    return i;
  }

  Val& operator[](const u64& k) {
    if (cap == 0) extend();
    int i = index(k);
    if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; }
    return val[i];
  }

  Val get(const u64& k, Val default_value) {
    int i = index(k);
    return (used[i] ? val[i] : default_value);
  }

  bool count(const u64& k) {
    int i = index(k);
    return used[i] && key[i] == k;
  }

  // f(key, val)

  template <typename F>
  void enumerate_all(F f) {
    FOR(i, len(used)) if (used[i]) f(key[i], val[i]);
  }

private:
  u32 cap, mask;
  vc<u64> key;
  vc<Val> val;
  vc<bool> used;

  u64 hash(u64 x) {
    static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count();
    x += FIXED_RANDOM;
    x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
    x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
    return (x ^ (x >> 31)) & mask;
  }

  void extend() {
    vc<pair<u64, Val>> dat;
    dat.reserve(len(used) / 2 - cap);
    FOR(i, len(used)) {
      if (used[i]) dat.eb(key[i], val[i]);
    }
    build(2 * len(dat));
    for (auto& [a, b]: dat) (*this)[a] = b;
  }
};
#line 2 "ds/segtree/dual_segtree.hpp"

template <typename Monoid>
struct Dual_SegTree {
  using MA = Monoid;
  using A = typename MA::value_type;
  int n, log, size;
  vc<A> laz;

  Dual_SegTree() : Dual_SegTree(0) {}
  Dual_SegTree(int n) { build(n); }

  void build(int m) {
    n = m;
    log = 1;
    while ((1 << log) < n) ++log;
    size = 1 << log;
    laz.assign(size << 1, MA::unit());
  }

  A get(int p) {
    assert(0 <= p && p < n);
    p += size;
    for (int i = log; i >= 1; i--) push(p >> i);
    return laz[p];
  }

  vc<A> get_all() {
    FOR(i, size) push(i);
    return {laz.begin() + size, laz.begin() + size + n};
  }

  void set(int p, A x) {
    get(p);
    laz[p + size] = x;
  }

  void apply(int l, int r, const A& a) {
    assert(0 <= l && l <= r && r <= n);
    if (l == r) return;
    l += size, r += size;
    if (!MA::commute) {
      for (int i = log; i >= 1; i--) {
        if (((l >> i) << i) != l) push(l >> i);
        if (((r >> i) << i) != r) push((r - 1) >> i);
      }
    }
    while (l < r) {
      if (l & 1) all_apply(l++, a);
      if (r & 1) all_apply(--r, a);
      l >>= 1, r >>= 1;
    }
  }

private:
  void push(int k) {
    if (laz[k] == MA::unit()) return;
    all_apply(2 * k, laz[k]), all_apply(2 * k + 1, laz[k]);
    laz[k] = MA::unit();
  }
  void all_apply(int k, A a) { laz[k] = MA::op(laz[k], a); }
};
#line 2 "alg/monoid/min.hpp"

template <typename E>
struct Monoid_Min {
  using X = E;
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return min(x, y); }
  static constexpr X unit() { return infty<E>; }
  static constexpr bool commute = true;
};
#line 4 "geo/range_closest_pair_query.hpp"

// 点群 {p_i | i in [l, r)} に対する最近点対の計算を行うクエリ
// O(KNlogKN + QlogN)
// https://qoj.ac/problem/5463
// https://codeforces.com/gym/104172/attachments/download/18933/Hong_Kong_Tutorial.pdf
// 点群が 1 次元:https://codeforces.com/problemset/problem/765/F
struct Range_Closest_Pair_Query {
  /*
  ・R を増やしながら、L ごとの答を管理する
  ・2^{k-1} <= ANS[L:R] < 2^{k} となる L :レベル k (レベル 0:距離 0)
  ・レベル 0, 1, 2, ..., 29 のグリッドを用意する
   ・幅は 2^k
   ・一辺 1.99 の正方形内で点対距離が 1 以上 → 8 個までありうる
  ・レベル 29, 28, ..., 0 の順に探索する:9 近傍
   ・答が見つかったらレベルを下げる。左向きに伝搬。
   ・レベルの減少は 30N 回までしか起きない
  */
  const int LOG = 30;
  vc<pair<int, int>> point;
  vc<pair<int, int>> query;
  void add_point(int x, int y) {
    assert(0 <= x && x < (1 << LOG));
    assert(0 <= y && y < (1 << LOG));
    point.eb(x, y);
  }
  void add_query(int L, int R) {
    assert(R - L >= 2);
    query.eb(L, R);
  }
  ll dist(int i, int j) {
    ll dx = point[i].fi - point[j].fi;
    ll dy = point[i].se - point[j].se;
    return dx * dx + dy * dy;
  }

  vc<ll> calc() {
    const int K = LOG;
    const int N = len(point), Q = len(query);
    using A9 = array<int, 9>;
    // それぞれのレベルのときのセル番号
    vv(int, IDX, K, N, -1);
    // 各セル番号に対する近傍
    vc<A9> nbd;
    FOR(k, 1, K) {
      HashMap<int> MP(N);
      auto to_64 = [&](int x, int y) -> u64 { return u64(x) << 30 | y; };
      int off = len(nbd);
      int p = off;
      FOR(i, N) {
        int x = point[i].fi >> (k);
        int y = point[i].se >> (k);
        u64 key = to_64(x, y);
        if (!MP.count(key)) { MP[key] = p++; }
        IDX[k][i] = MP[key];
      }
      nbd.resize(p);
      FOR(i, N) {
        int x = point[i].fi >> (k);
        int y = point[i].se >> (k);
        int me = MP[to_64(x, y)];
        int s = 0;
        FOR(dx, -1, 2) FOR(dy, -1, 2) {
          u64 key = to_64(x + dx, y + dy);
          nbd[me][s++] = MP.get(key, -1);
        }
      }
    }

    vc<array<int, 8>> dat(len(nbd), {-1, -1, -1, -1, -1, -1, -1, -1});
    auto add = [&](int k, int i) -> void {
      int idx = IDX[k][i];
      for (auto&& j: dat[idx]) {
        if (j == -1) {
          j = i;
          return;
        }
      }
    };
    auto rm = [&](int k, int i) -> void {
      int idx = IDX[k][i];
      for (auto&& j: dat[idx]) {
        if (j == i) {
          j = -1;
          return;
        }
      }
    };

    auto solve_level = [&](int k, int i) -> vc<pair<int, ll>> {
      // レベル k の点群に対する答の計算
      vc<pair<int, ll>> res;
      int me = IDX[k][i];
      for (auto&& idx: nbd[me]) {
        if (idx == -1) continue;
        for (auto&& j: dat[idx]) {
          if (j == -1) continue;
          res.eb(j, dist(i, j));
        }
      }
      return res;
    };
    Dual_SegTree<Monoid_Min<ll>> seg(N);
    vc<int> LEVEL(N, -1);
    auto get_lv = [&](ll d) -> int {
      if (d == 0) return 0;
      return topbit(d) / 2 + 1;
    };

    vc<int> left(Q);
    vvc<int> query_at(N);
    FOR(qid, Q) {
      auto [L, R] = query[qid];
      left[qid] = L;
      query_at[--R].eb(qid);
    }

    vi ANS(Q);

    FOR(R, N) {
      // R 番目の点を用いた答の更新
      vc<pair<int, ll>> upd;
      FOR(k, 1, K) {
        auto res = solve_level(k, R);
        upd.insert(upd.end(), all(res));
      }

      for (auto [i, d]: upd) {
        int lv = get_lv(d);
        if (seg.get(i) < d) continue;
        // 答えの更新
        seg.apply(0, i + 1, d);
        // レベルの更新
        while (i >= 0 && LEVEL[i] > lv) {
          rm(LEVEL[i], i);
          LEVEL[i] = lv;
          if (lv) add(lv, i);
          --i;
        }
      }
      LEVEL[R] = K - 1;
      add(K - 1, R);
      for (auto&& qid: query_at[R]) { ANS[qid] = seg.get(left[qid]); }
    }
    return ANS;
  }
};
#line 5 "test/1_mytest/range_closest_pair.test.cpp"

void test() {
  FOR(N, 2, 100) {
    FOR(Q, 1, 100) {
      vc<pair<int, int>> point(N), query(Q);
      FOR(i, N) {
        int x = RNG(0, 20);
        int y = RNG(0, 20);
        point[i] = {x, y};
      }
      FOR(q, Q) {
        while (1) {
          int L = RNG(0, N);
          int R = RNG(0, N);
          if (L + 1 <= R) {
            query[q] = {L, R + 1};
            break;
          }
        }
      }
      Range_Closest_Pair_Query X;
      for (auto&& [a, b]: point) X.add_point(a, b);
      for (auto&& [l, r]: query) X.add_query(l, r);
      vi ANS = X.calc();
      FOR(q, Q) {
        ll ans = infty<ll>;
        auto [L, R] = query[q];
        FOR(i, L, R) FOR(j, L, R) {
          if (i == j) continue;
          auto [x1, y1] = point[i];
          auto [x2, y2] = point[j];
          ll dx = x1 - x2, dy = y1 - y2;
          chmin(ans, dx * dx + dy * dy);
        }
        assert(ans == ANS[q]);
      }
    }
  }
}

void solve() {
  int a, b;
  cin >> a >> b;
  cout << a + b << "\n";
}

signed main() {
  test();
  solve();
  return 0;
}
Back to top page