This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb" #include "my_template.hpp" #include "ds/segtree/prefix_max_segtree.hpp" #include "random/base.hpp" #include "alg/monoid/affine.hpp" #include "mod/modint.hpp" using mint = modint998; using F = pair<mint, mint>; void test(ll N) { vc<int> key(N); vc<F> X(N); auto get = [&]() -> pair<int, F> { int k = RNG(0, 100); mint a = RNG(0, mint::get_mod()); mint b = RNG(0, mint::get_mod()); return {k, {a, b}}; }; FOR(i, N) tie(key[i], X[i]) = get(); auto segf = [&](int i) -> pair<int, F> { return {key[i], X[i]}; }; using Mono = Monoid_Affine<mint>; Prefix_Max_SegTree<int, Mono> seg(N, segf); auto naive = [&](int L, int R) -> F { int mx = -infty<int>; F prod = Mono::unit(); FOR(i, L, R) { if (mx <= key[i]) { mx = key[i]; prod = Mono::op(prod, X[i]); } } return prod; }; /* set get get_all prod prod_all */ int Q = 1000; FOR(Q) { int t = RNG(0, 5); int i = RNG(0, N); int L = RNG(0, N), R = RNG(0, N); auto [k, x] = get(); if (L > R) swap(L, R); ++R; if (t == 0) { key[i] = k, X[i] = x; seg.set(i, {k, x}); } if (t == 1) { auto [k, x] = seg.get(i); assert(key[i] == k); assert(X[i] == x); } if (t == 2) { auto [k, x] = seg.get_all(); assert(key == k); assert(X == x); } if (t == 3) { assert(naive(L, R) == seg.prod(L, R)); } if (t == 4) { assert(naive(0, N) == seg.prod_all()); } } } void solve() { int a, b; cin >> a >> b; cout << a + b << "\n"; } signed main() { FOR(100) FOR(N, 1, 100) { test(N); } solve(); return 0; }
#line 1 "test/1_mytest/prefix_max_segtree.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/aplusb" #line 1 "my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else // https://codeforces.com/blog/entry/96344 #pragma GCC optimize("Ofast,unroll-loops") // いまの CF だとこれ入れると動かない? // #pragma GCC target("avx2,popcnt") #include <bits/stdc++.h> using namespace std; using ll = long long; using u8 = uint8_t; using u16 = uint16_t; using u32 = uint32_t; using u64 = uint64_t; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'010'000'000; template <> constexpr ll infty<ll> = 2'020'000'000'000'000'000; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_sgn(int x) { return (__builtin_parity(x) & 1 ? -1 : 1); } int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); } int popcnt_sgn(ll x) { return (__builtin_parity(x) & 1 ? -1 : 1); } int popcnt_sgn(u64 x) { return (__builtin_parity(x) & 1 ? -1 : 1); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T kth_bit(int k) { return T(1) << k; } template <typename T> bool has_kth_bit(T x, int k) { return x >> k & 1; } template <typename T> T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); } template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); } template <typename T> pair<T, T> divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } template <typename T, typename... Vectors> void concat(vc<T> &first, const Vectors &... others) { vc<T> &res = first; (res.insert(res.end(), others.begin(), others.end()), ...); } #endif #line 4 "test/1_mytest/prefix_max_segtree.test.cpp" #line 1 "ds/segtree/prefix_max_segtree.hpp" /* key[0],...,key[n-1] がある モノイドの列 x[0],...,x[n-1] がある query(l,r): l から見えるところに対する monoid product 見える: key[i]==max(key[0]...key[i]) Qlog^2n https://qoj.ac/contest/1540/problem/8338 */ template <typename KEY_TYPE, typename Monoid> struct Prefix_Max_SegTree { using MX = Monoid; using KEY = KEY_TYPE; using X = typename MX::value_type; int n, size, log; struct Data { KEY max; X prod, rprod; // rprod はこの区間だけで計算したときの右側 }; vc<Data> dat; Prefix_Max_SegTree() {} Prefix_Max_SegTree(int n) { build(n); } template <typename F> Prefix_Max_SegTree(int n, F f) { build(n, f); } Prefix_Max_SegTree(const vc<X>& v) { build(v); } void build(int m) { build(m, [](int i) -> pair<KEY, X> { return {-infty<int>, MX::unit()}; }); } template <typename F> void build(int m, F f) { n = m, log = 1; while ((1 << log) < n) ++log; size = 1 << log; dat.assign(size << 1, {-infty<int>, MX::unit(), MX::unit()}); FOR(i, n) { auto [k, x] = f(i); dat[size + i] = {k, x, MX::unit()}; } FOR_R(i, 1, size) update(i); } void set(int i, pair<KEY, X> p) { int k = p.fi; X x = p.se; i += size; dat[i] = {k, x, MX::unit()}; while (i > 1) i /= 2, update(i); } X prod_all() { return dat[1].prod; } X prod(int L, int R) { KEY k = -infty<KEY>; vc<int> suff; L += size, R += size; X prod = MX::unit(); while (L < R) { if (L & 1) { prod = MX::op(prod, dfs(L, k)), chmax(k, dat[L].max), ++L; } if (R & 1) { suff.eb(--R); } L /= 2, R /= 2; } reverse(all(suff)); for (auto& v: suff) { prod = MX::op(prod, dfs(v, k)), chmax(k, dat[v].max); } return prod; } pair<KEY, X> get(int i) { return {dat[size + i].max, dat[size + i].prod}; } pair<vc<KEY>, vc<X>> get_all() { vc<KEY> key(n); vc<X> x(n); FOR(i, n) key[i] = dat[size + i].max, x[i] = dat[size + i].prod; return {key, x}; } private: void update(int i) { assert(0 <= i && i < size); dat[i].max = max(dat[2 * i + 0].max, dat[2 * i + 1].max); dat[i].rprod = dfs(2 * i + 1, dat[2 * i + 0].max); dat[i].prod = MX::op(dat[2 * i + 0].prod, dat[i].rprod); } X dfs(int v, KEY k) { // prefix に k を置いた場合の subtree(v) での値 if (size <= v) { return (k <= dat[v].max ? dat[v].prod : MX::unit()); } if (k <= dat[2 * v + 0].max) { return MX::op(dfs(2 * v + 0, k), dat[v].rprod); } return dfs(2 * v + 1, k); } }; #line 2 "random/base.hpp" u64 RNG_64() { static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL; x_ ^= x_ << 7; return x_ ^= x_ >> 9; } u64 RNG(u64 lim) { return RNG_64() % lim; } ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); } #line 2 "alg/monoid/affine.hpp" // op(F, G) = comp(G,F), F のあとで G template <typename K> struct Monoid_Affine { using F = pair<K, K>; using value_type = F; using X = value_type; static constexpr F op(const F &x, const F &y) noexcept { return F({x.first * y.first, x.second * y.first + y.second}); } static constexpr F inverse(const F &x) { auto [a, b] = x; a = K(1) / a; return {a, a * (-b)}; } static constexpr K eval(const F &f, K x) noexcept { return f.first * x + f.second; } static constexpr F unit() { return {K(1), K(0)}; } static constexpr bool commute = false; }; #line 2 "mod/modint_common.hpp" struct has_mod_impl { template <class T> static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {}; template <typename mint> mint inv(int n) { static const int mod = mint::get_mod(); static vector<mint> dat = {0, 1}; assert(0 <= n); if (n >= mod) n %= mod; while (len(dat) <= n) { int k = len(dat); int q = (mod + k - 1) / k; dat.eb(dat[k * q - mod] * mint::raw(q)); } return dat[n]; } template <typename mint> mint fact(int n) { static const int mod = mint::get_mod(); assert(0 <= n && n < mod); static vector<mint> dat = {1, 1}; while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat))); return dat[n]; } template <typename mint> mint fact_inv(int n) { static vector<mint> dat = {1, 1}; if (n < 0) return mint(0); while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat))); return dat[n]; } template <class mint, class... Ts> mint fact_invs(Ts... xs) { return (mint(1) * ... * fact_inv<mint>(xs)); } template <typename mint, class Head, class... Tail> mint multinomial(Head &&head, Tail &&... tail) { return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...); } template <typename mint> mint C_dense(int n, int k) { assert(n >= 0); if (k < 0 || n < k) return 0; static vvc<mint> C; static int H = 0, W = 0; auto calc = [&](int i, int j) -> mint { if (i == 0) return (j == 0 ? mint(1) : mint(0)); return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0); }; if (W <= k) { FOR(i, H) { C[i].resize(k + 1); FOR(j, W, k + 1) { C[i][j] = calc(i, j); } } W = k + 1; } if (H <= n) { C.resize(n + 1); FOR(i, H, n + 1) { C[i].resize(W); FOR(j, W) { C[i][j] = calc(i, j); } } H = n + 1; } return C[n][k]; } template <typename mint, bool large = false, bool dense = false> mint C(ll n, ll k) { assert(n >= 0); if (k < 0 || n < k) return 0; if constexpr (dense) return C_dense<mint>(n, k); if constexpr (!large) return multinomial<mint>(n, k, n - k); k = min(k, n - k); mint x(1); FOR(i, k) x *= mint(n - i); return x * fact_inv<mint>(k); } template <typename mint, bool large = false> mint C_inv(ll n, ll k) { assert(n >= 0); assert(0 <= k && k <= n); if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k); return mint(1) / C<mint, 1>(n, k); } // [x^d](1-x)^{-n} template <typename mint, bool large = false, bool dense = false> mint C_negative(ll n, ll d) { assert(n >= 0); if (d < 0) return mint(0); if (n == 0) { return (d == 0 ? mint(1) : mint(0)); } return C<mint, large, dense>(n + d - 1, d); } #line 3 "mod/modint.hpp" template <int mod> struct modint { static constexpr u32 umod = u32(mod); static_assert(umod < u32(1) << 31); u32 val; static modint raw(u32 v) { modint x; x.val = v; return x; } constexpr modint() : val(0) {} constexpr modint(u32 x) : val(x % umod) {} constexpr modint(u64 x) : val(x % umod) {} constexpr modint(u128 x) : val(x % umod) {} constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){}; bool operator<(const modint &other) const { return val < other.val; } modint &operator+=(const modint &p) { if ((val += p.val) >= umod) val -= umod; return *this; } modint &operator-=(const modint &p) { if ((val += umod - p.val) >= umod) val -= umod; return *this; } modint &operator*=(const modint &p) { val = u64(val) * p.val % umod; return *this; } modint &operator/=(const modint &p) { *this *= p.inverse(); return *this; } modint operator-() const { return modint::raw(val ? mod - val : u32(0)); } modint operator+(const modint &p) const { return modint(*this) += p; } modint operator-(const modint &p) const { return modint(*this) -= p; } modint operator*(const modint &p) const { return modint(*this) *= p; } modint operator/(const modint &p) const { return modint(*this) /= p; } bool operator==(const modint &p) const { return val == p.val; } bool operator!=(const modint &p) const { return val != p.val; } modint inverse() const { int a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return modint(u); } modint pow(ll n) const { assert(n >= 0); modint ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } static constexpr int get_mod() { return mod; } // (n, r), r は 1 の 2^n 乗根 static constexpr pair<int, int> ntt_info() { if (mod == 120586241) return {20, 74066978}; if (mod == 167772161) return {25, 17}; if (mod == 469762049) return {26, 30}; if (mod == 754974721) return {24, 362}; if (mod == 880803841) return {23, 211}; if (mod == 943718401) return {22, 663003469}; if (mod == 998244353) return {23, 31}; if (mod == 1004535809) return {21, 582313106}; if (mod == 1012924417) return {21, 368093570}; return {-1, -1}; } static constexpr bool can_ntt() { return ntt_info().fi != -1; } }; #ifdef FASTIO template <int mod> void rd(modint<mod> &x) { fastio::rd(x.val); x.val %= mod; // assert(0 <= x.val && x.val < mod); } template <int mod> void wt(modint<mod> x) { fastio::wt(x.val); } #endif using modint107 = modint<1000000007>; using modint998 = modint<998244353>; #line 9 "test/1_mytest/prefix_max_segtree.test.cpp" using mint = modint998; using F = pair<mint, mint>; void test(ll N) { vc<int> key(N); vc<F> X(N); auto get = [&]() -> pair<int, F> { int k = RNG(0, 100); mint a = RNG(0, mint::get_mod()); mint b = RNG(0, mint::get_mod()); return {k, {a, b}}; }; FOR(i, N) tie(key[i], X[i]) = get(); auto segf = [&](int i) -> pair<int, F> { return {key[i], X[i]}; }; using Mono = Monoid_Affine<mint>; Prefix_Max_SegTree<int, Mono> seg(N, segf); auto naive = [&](int L, int R) -> F { int mx = -infty<int>; F prod = Mono::unit(); FOR(i, L, R) { if (mx <= key[i]) { mx = key[i]; prod = Mono::op(prod, X[i]); } } return prod; }; /* set get get_all prod prod_all */ int Q = 1000; FOR(Q) { int t = RNG(0, 5); int i = RNG(0, N); int L = RNG(0, N), R = RNG(0, N); auto [k, x] = get(); if (L > R) swap(L, R); ++R; if (t == 0) { key[i] = k, X[i] = x; seg.set(i, {k, x}); } if (t == 1) { auto [k, x] = seg.get(i); assert(key[i] == k); assert(X[i] == x); } if (t == 2) { auto [k, x] = seg.get_all(); assert(key == k); assert(X == x); } if (t == 3) { assert(naive(L, R) == seg.prod(L, R)); } if (t == 4) { assert(naive(0, N) == seg.prod_all()); } } } void solve() { int a, b; cin >> a >> b; cout << a + b << "\n"; } signed main() { FOR(100) FOR(N, 1, 100) { test(N); } solve(); return 0; }