This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#include "my_template.hpp"
#include "alg/monoid/min.hpp"
#include "ds/segtree/dynamic_segtree_sparse.hpp"
#include "random/base.hpp"
void test() {
using Mono = Monoid_Min<int>;
int unit = Mono::unit();
FOR(100) {
int N = RNG(1, 100);
vc<int> A(N, unit);
Dynamic_SegTree_Sparse<Mono, false> X(0, N);
int root = 0;
int Q = RNG(1, 1000);
FOR(Q) {
int t = RNG(0, 4);
int L = RNG(0, N);
int R = RNG(0, N);
if (L > R) swap(L, R);
++R;
if (t == 0) {
int i = RNG(0, N);
int x = RNG(1, 100);
root = X.set(root, i, x);
A[i] = x;
}
if (t == 1) {
int i = RNG(0, N);
int x = RNG(1, 100);
root = X.multiply(root, i, x);
chmin(A[i], x);
}
if (t == 2) {
vc<int> B = {A.begin() + L, A.begin() + R};
assert(X.prod(root, L, R) == MIN(B));
}
if (t == 3) {
// max_right
int LIM = RNG(1, 100);
auto check = [&](auto e) -> bool { return e >= LIM; };
int naive = [&]() -> int {
ll mi = unit;
FOR(i, L, N) {
chmin(mi, A[i]);
if (mi < LIM) return i;
}
return N;
}();
assert(naive == X.max_right(root, check, L));
}
}
}
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
test();
solve();
return 0;
}
#line 1 "test/1_mytest/dynamic_segtree_sparse.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#if defined(__GNUC__)
#include <bits/allocator.h>
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,popcnt")
#endif
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = numeric_limits<double>::infinity();
template <>
constexpr long double infty<long double> =
numeric_limits<long double>::infinity();
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using pq_max = priority_queue<T>;
template <class T>
using pq_min = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a) - 1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a) - 1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b) - 1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define all(x) (x).begin(), (x).end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T kth_bit(int k) {
return T(1) << k;
}
template <typename T>
bool has_kth_bit(T x, int k) {
return x >> k & 1;
}
template <typename UINT>
struct all_bit {
struct iter {
UINT s;
iter(UINT s) : s(s) {}
int operator*() const { return lowbit(s); }
iter &operator++() {
s &= s - 1;
return *this;
}
bool operator!=(const iter) const { return s != 0; }
};
UINT s;
all_bit(UINT s) : s(s) {}
iter begin() const { return iter(s); }
iter end() const { return iter(0); }
};
template <typename UINT>
struct all_subset {
static_assert(is_unsigned<UINT>::value);
struct iter {
UINT s, t;
bool ed;
iter(UINT s) : s(s), t(s), ed(0) {}
UINT operator*() const { return s ^ t; }
iter &operator++() {
(t == 0 ? ed = 1 : t = (t - 1) & s);
return *this;
}
bool operator!=(const iter) const { return !ed; }
};
UINT s;
all_subset(UINT s) : s(s) {}
iter begin() const { return iter(s); }
iter end() const { return iter(0); }
};
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
constexpr ll TEN[] = {
1LL,
10LL,
100LL,
1000LL,
10000LL,
100000LL,
1000000LL,
10000000LL,
100000000LL,
1000000000LL,
10000000000LL,
100000000000LL,
1000000000000LL,
10000000000000LL,
100000000000000LL,
1000000000000000LL,
10000000000000000LL,
100000000000000000LL,
1000000000000000000LL,
};
template <typename T, typename U>
T SUM(const U &A) {
return std::accumulate(A.begin(), A.end(), T{});
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
template <class C, class T>
inline long long LB(const C &c, const T &x) {
return lower_bound(c.begin(), c.end(), x) - c.begin();
}
template <class C, class T>
inline long long UB(const C &c, const T &x) {
return upper_bound(c.begin(), c.end(), x) - c.begin();
}
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <class T, class Container, class Compare>
T POP(priority_queue<T, Container, Compare> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (llabs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vc<T> cumsum(const vc<U> &A, int off = 1) {
int N = A.size();
vc<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vc<int> argsort(const vc<T> &A) {
vc<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &...others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 2 "alg/monoid/min.hpp"
template <typename E>
struct Monoid_Min {
using X = E;
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return min(x, y); }
static constexpr X unit() { return infty<E>; }
static constexpr bool commute = true;
};
#line 1 "ds/segtree/dynamic_segtree_sparse.hpp"
// 常にほとんどの要素が unit であることが保証されるような動的セグ木
// したがって、default_prod の類は持たせられず、acted monoid も一般には扱えない
// 追加 N 回のときノード数 N 以下が保証される
template <typename Monoid, bool PERSISTENT>
struct Dynamic_SegTree_Sparse {
using MX = Monoid;
using X = typename MX::value_type;
struct Node {
int ch[2];
ll idx;
X prod, x;
};
const ll L0, R0;
static constexpr int NIL = 0;
vc<Node> node;
vc<int> FREE;
Dynamic_SegTree_Sparse(ll L0, ll R0) : L0(L0), R0(R0) { reset(); }
void reserve(int n) { node.reserve(n + 1); }
void reset() {
node.clear(), FREE.clear();
node.eb(Node{{NIL, NIL}, 0, MX::unit(), MX::unit()}); // NIL
}
// 木 dp のマージのときなどに使用すると MLE 回避できることがある
// https://codeforces.com/problemset/problem/671/D
void free_subtree(int c) {
assert(c != NIL);
auto dfs = [&](auto &dfs, int c) -> void {
if (c == NIL) return;
dfs(dfs, node[c].ch[0]), dfs(dfs, node[c].ch[1]);
FREE.eb(c);
};
dfs(dfs, c);
}
inline int new_root() { return NIL; }
inline int new_node(ll idx, const X x) {
if (!FREE.empty()) {
int id = POP(FREE);
node[id].ch[0] = node[id].ch[1] = NIL;
node[id].idx = idx, node[id].x = x, node[id].prod = x;
return id;
}
node.eb(Node{{NIL, NIL}, idx, x, x});
return int(node.size()) - 1;
}
inline Node operator[](int i) const { return node[i]; }
X prod(int root, ll l, ll r) {
assert(L0 <= l && l <= r && r <= R0);
if (root == NIL || l == r) return MX::unit();
X x = MX::unit();
prod_rec(root, L0, R0, l, r, x);
return x;
}
X prod_all(int root) { return (root == NIL ? MX::unit() : node[root].prod); }
int set(int root, ll i, const X &x) {
assert(L0 <= i && i < R0);
return set_rec(root, L0, R0, i, x);
}
int multiply(int root, ll i, const X &x) {
assert(L0 <= i && i < R0);
return multiply_rec(root, L0, R0, i, x);
}
template <typename F>
ll max_right(int root, F check, ll L) {
assert(L0 <= L && L <= R0 && check(MX::unit()));
X x = MX::unit();
return max_right_rec(root, check, L0, R0, L, x);
}
template <typename F>
ll min_left(int root, F check, ll R) {
assert(L0 <= R && R <= R0 && check(MX::unit()));
X x = MX::unit();
return min_left_rec(root, check, L0, R0, R, x);
}
vc<pair<ll, X>> get_all(int root) {
vc<pair<ll, X>> res;
auto dfs = [&](auto &dfs, int c) -> void {
if (c == NIL) return;
dfs(dfs, node[c].ch[0]);
res.eb(node[c].idx, node[c].x);
dfs(dfs, node[c].ch[1]);
};
dfs(dfs, root);
return res;
}
X get(int root, ll idx) {
auto dfs = [&](auto &dfs, int c) -> X {
if (c == NIL) return MX::unit();
if (idx == node[c].idx) return node[c].x;
return dfs(dfs, node[c].ch[idx > node[c].idx]);
};
return dfs(dfs, root);
}
private:
inline void update(int c) {
node[c].prod = node[c].x;
node[c].prod = MX::op(node[node[c].ch[0]].prod, node[c].prod);
node[c].prod = MX::op(node[c].prod, node[node[c].ch[1]].prod);
}
inline int copy_node(int c) {
if constexpr (!PERSISTENT)
return c;
else {
if (c == NIL) return c;
node.eb(node[c]);
return int(node.size()) - 1;
}
}
int set_rec(int c, ll l, ll r, ll i, X x) {
if (c == NIL) return new_node(i, x);
c = copy_node(c);
if (node[c].idx == i) {
node[c].x = x;
update(c);
return c;
}
ll m = (l + r) / 2;
if (i < m) {
if (node[c].idx < i) swap(node[c].idx, i), swap(node[c].x, x);
node[c].ch[0] = set_rec(node[c].ch[0], l, m, i, x);
}
if (m <= i) {
if (i < node[c].idx) swap(node[c].idx, i), swap(node[c].x, x);
node[c].ch[1] = set_rec(node[c].ch[1], m, r, i, x);
}
update(c);
return c;
}
int multiply_rec(int c, ll l, ll r, ll i, X x) {
if (c == NIL) return new_node(i, x);
c = copy_node(c);
if (node[c].idx == i) {
node[c].x = MX::op(node[c].x, x);
update(c);
return c;
}
ll m = (l + r) / 2;
if (i < m) {
if (node[c].idx < i) swap(node[c].idx, i), swap(node[c].x, x);
node[c].ch[0] = multiply_rec(node[c].ch[0], l, m, i, x);
}
if (m <= i) {
if (i < node[c].idx) swap(node[c].idx, i), swap(node[c].x, x);
node[c].ch[1] = multiply_rec(node[c].ch[1], m, r, i, x);
}
update(c);
return c;
}
void prod_rec(int c, ll l, ll r, ll ql, ll qr, X &x) {
chmax(ql, l);
chmin(qr, r);
if (ql >= qr || c == NIL) return;
if (l == ql && r == qr) {
x = MX::op(x, node[c].prod);
return;
}
ll m = (l + r) / 2;
prod_rec(node[c].ch[0], l, m, ql, qr, x);
if (ql <= (node[c].idx) && (node[c].idx) < qr) x = MX::op(x, node[c].x);
prod_rec(node[c].ch[1], m, r, ql, qr, x);
}
template <typename F>
ll max_right_rec(int c, const F &check, ll l, ll r, ll ql, X &x) {
if (c == NIL || r <= ql) return R0;
if (check(MX::op(x, node[c].prod))) {
x = MX::op(x, node[c].prod);
return R0;
}
ll m = (l + r) / 2;
ll k = max_right_rec(node[c].ch[0], check, l, m, ql, x);
if (k != R0) return k;
if (ql <= node[c].idx) {
x = MX::op(x, node[c].x);
if (!check(x)) return node[c].idx;
}
return max_right_rec(node[c].ch[1], check, m, r, ql, x);
}
template <typename F>
ll min_left_rec(int c, const F &check, ll l, ll r, ll qr, X &x) {
if (c == NIL || qr <= l) return L0;
if (check(MX::op(node[c].prod, x))) {
x = MX::op(node[c].prod, x);
return L0;
}
ll m = (l + r) / 2;
ll k = min_left_rec(node[c].ch[1], check, m, r, qr, x);
if (k != L0) return k;
if (node[c].idx < qr) {
x = MX::op(node[c].x, x);
if (!check(x)) return node[c].idx + 1;
}
return min_left_rec(node[c].ch[0], check, l, m, qr, x);
}
};
#line 2 "random/base.hpp"
u64 RNG_64() {
static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 6 "test/1_mytest/dynamic_segtree_sparse.test.cpp"
void test() {
using Mono = Monoid_Min<int>;
int unit = Mono::unit();
FOR(100) {
int N = RNG(1, 100);
vc<int> A(N, unit);
Dynamic_SegTree_Sparse<Mono, false> X(0, N);
int root = 0;
int Q = RNG(1, 1000);
FOR(Q) {
int t = RNG(0, 4);
int L = RNG(0, N);
int R = RNG(0, N);
if (L > R) swap(L, R);
++R;
if (t == 0) {
int i = RNG(0, N);
int x = RNG(1, 100);
root = X.set(root, i, x);
A[i] = x;
}
if (t == 1) {
int i = RNG(0, N);
int x = RNG(1, 100);
root = X.multiply(root, i, x);
chmin(A[i], x);
}
if (t == 2) {
vc<int> B = {A.begin() + L, A.begin() + R};
assert(X.prod(root, L, R) == MIN(B));
}
if (t == 3) {
// max_right
int LIM = RNG(1, 100);
auto check = [&](auto e) -> bool { return e >= LIM; };
int naive = [&]() -> int {
ll mi = unit;
FOR(i, L, N) {
chmin(mi, A[i]);
if (mi < LIM) return i;
}
return N;
}();
assert(naive == X.max_right(root, check, L));
}
}
}
}
void solve() {
int a, b;
cin >> a >> b;
cout << a + b << "\n";
}
signed main() {
test();
solve();
return 0;
}