library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub maspypy/library

:heavy_check_mark: test/1_mytest/dynamic_lazy_segtree.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#include "my_template.hpp"
#include "alg/acted_monoid/summax_assign.hpp"
#include "ds/segtree/dynamic_lazy_segtree.hpp"
#include "random/base.hpp"

void test() {
  using AM = ActedMonoid_SumMax_Assign<int, -1>;
  using P = typename AM::X;

  FOR(100) {
    int N = RNG(1, 1000);
    int Q = RNG(1, 1000);

    vc<int> A(N, 10);
    Dynamic_Lazy_SegTree<AM, false> X(20 * Q, 0, N, [](ll l, ll r) -> P { return {10 * (r - l), 10}; });

    auto root = X.new_node(0, N);

    FOR(Q) {
      int t = RNG(0, 4);
      int L = RNG(0, N);
      int R = RNG(0, N);
      if (L > R) swap(L, R);
      ++R;
      if (t == 0) {
        int i = RNG(0, N);
        int x = RNG(1, 100);
        root = X.set(root, i, {x, x});
        A[i] = x;
      }
      if (t == 1) {
        vc<int> B = {A.begin() + L, A.begin() + R};
        assert(X.prod(root, L, R).fi == SUM<int>(B));
        assert(X.prod(root, L, R).se == MAX(B));
      }
      if (t == 2) {
        int x = RNG(1, 100);
        FOR(i, L, R) A[i] = x;
        root = X.apply(root, L, R, x);
      }
      if (t == 3) {
        // max_right
        int LIM = R;
        auto check = [&](auto e) -> bool { return e.se <= LIM; };
        int naive = [&]() -> int {
          ll mx = 0;
          FOR(i, L, N) {
            chmax(mx, A[i]);
            if (mx > LIM) return i;
          }
          return N;
        }();

        assert(naive == X.max_right(root, check, L));
      }
    }
  }
}

void solve() {
  int a, b;
  cin >> a >> b;
  cout << a + b << "\n";
}

signed main() {
  test();
  solve();

  return 0;
}
#line 1 "test/1_mytest/dynamic_lazy_segtree.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
  vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T kth_bit(int k) {
  return T(1) << k;
}
template <typename T>
bool has_kth_bit(T x, int k) {
  return x >> k & 1;
}

template <typename UINT>
struct all_bit {
  struct iter {
    UINT s;
    iter(UINT s) : s(s) {}
    int operator*() const { return lowbit(s); }
    iter &operator++() {
      s &= s - 1;
      return *this;
    }
    bool operator!=(const iter) const { return s != 0; }
  };
  UINT s;
  all_bit(UINT s) : s(s) {}
  iter begin() const { return iter(s); }
  iter end() const { return iter(0); }
};

template <typename UINT>
struct all_subset {
  static_assert(is_unsigned<UINT>::value);
  struct iter {
    UINT s, t;
    bool ed;
    iter(UINT s) : s(s), t(s), ed(0) {}
    int operator*() const { return s ^ t; }
    iter &operator++() {
      (t == 0 ? ed = 1 : t = (t - 1) & s);
      return *this;
    }
    bool operator!=(const iter) const { return !ed; }
  };
  UINT s;
  all_subset(UINT s) : s(s) {}
  iter begin() const { return iter(s); }
  iter end() const { return iter(0); }
};

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
  vc<T> &res = first;
  (res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 2 "alg/monoid/summax.hpp"

template <typename E>
struct Monoid_SumMax {
  using value_type = pair<E, E>;
  using X = value_type;
  static X op(X x, X y) { return {x.fi + y.fi, max(x.se, y.se)}; }
  static X from_element(E e) { return {e, e}; }
  static constexpr X unit() { return {E(0), -infty<E>}; }
  static constexpr bool commute = 1;
};
#line 2 "alg/monoid/assign.hpp"

template <typename X, int none_val>
struct Monoid_Assign {
  using value_type = X;
  static X op(X x, X y) { return (y == X(none_val) ? x : y); }
  static constexpr X unit() { return X(none_val); }
  static constexpr bool commute = false;
};
#line 3 "alg/acted_monoid/summax_assign.hpp"

template <typename E, E none_val>
struct ActedMonoid_SumMax_Assign {
  using Monoid_X = Monoid_SumMax<E>;
  using Monoid_A = Monoid_Assign<E, none_val>;
  using X = typename Monoid_X::value_type;
  using A = typename Monoid_A::value_type;
  static constexpr X act(const X& x, const A& a, const ll& size) {
    if (a == Monoid_A::unit()) return x;
    return {E(size) * a, a};
  }
};
#line 2 "ds/segtree/dynamic_lazy_segtree.hpp"

// Q*2logN 程度必要
template <typename ActedMonoid, bool PERSISTENT>
struct Dynamic_Lazy_SegTree {
  using AM = ActedMonoid;
  using MX = typename AM::Monoid_X;
  using MA = typename AM::Monoid_A;
  using X = typename AM::X;
  using A = typename AM::A;
  using F = function<X(ll, ll)>;
  F default_prod;

  struct Node {
    Node *l, *r;
    X x;
    A lazy;
  };

  const int NODES;
  const ll L0, R0;
  Node *pool;
  int pid;
  using np = Node *;

  Dynamic_Lazy_SegTree(
      int NODES, ll L0, ll R0, F default_prod = [](ll, ll) -> X { return MX::unit(); })
      : default_prod(default_prod), NODES(NODES), L0(L0), R0(R0), pid(0) {
    pool = new Node[NODES];
  }
  ~Dynamic_Lazy_SegTree() { delete[] pool; }

  np new_root() { return new_node(L0, R0); }

  np new_node(const X x) {
    assert(pid < NODES);
    pool[pid].l = pool[pid].r = nullptr;
    pool[pid].x = x;
    pool[pid].lazy = MA::unit();
    return &(pool[pid++]);
  }

  np new_node(ll l, ll r) { return new_node(default_prod(l, r)); }
  np new_node() { return new_node(L0, R0); }

  np new_node(const vc<X> &dat) {
    assert(L0 == 0 && R0 == len(dat));
    auto dfs = [&](auto &dfs, ll l, ll r) -> Node * {
      if (l == r) return nullptr;
      if (r == l + 1) return new_node(dat[l]);
      ll m = (l + r) / 2;
      np l_root = dfs(dfs, l, m), r_root = dfs(dfs, m, r);
      X x = MX::op(l_root->x, r_root->x);
      np root = new_node(x);
      root->l = l_root, root->r = r_root;
      return root;
    };
    return dfs(dfs, 0, len(dat));
  }

  X prod(np root, ll l, ll r) {
    if (l == r || !root) return MX::unit();
    assert(pid && L0 <= l && l < r && r <= R0);
    X x = MX::unit();
    prod_rec(root, L0, R0, l, r, x, MA::unit());
    return x;
  }

  X prod_all(np root) { return prod(root, L0, R0); }

  np set(np root, ll i, const X &x) {
    assert(pid && L0 <= i && i < R0);
    return set_rec(root, L0, R0, i, x);
  }

  np multiply(np root, ll i, const X &x) {
    assert(pid && L0 <= i && i < R0);
    return multiply_rec(root, L0, R0, i, x);
  }

  np apply(np root, ll l, ll r, const A &a) {
    if (l == r) return root;
    assert(pid && L0 <= l && l < r && r <= R0);
    return apply_rec(root, L0, R0, l, r, a);
  }

  template <typename F>
  ll max_right(np root, F check, ll L) {
    assert(pid && L0 <= L && L <= R0 && check(MX::unit()));
    X x = MX::unit();
    return max_right_rec(root, check, L0, R0, L, x);
  }

  template <typename F>
  ll min_left(np root, F check, ll R) {
    assert(pid && L0 <= R && R <= R0 && check(MX::unit()));
    X x = MX::unit();
    return min_left_rec(root, check, L0, R0, R, x);
  }

  // f(idx, val)
  template <typename F>
  void enumerate(np root, F f) {
    auto dfs = [&](auto &dfs, np c, ll l, ll r, A a) -> void {
      if (!c) return;
      if (r - l == 1) {
        f(l, AM::act(c->x, a, 1));
        return;
      }
      ll m = (l + r) / 2;
      a = MA::op(c->lazy, a);
      dfs(dfs, c->l, l, m, a);
      dfs(dfs, c->r, m, r, a);
    };
    dfs(dfs, root, L0, R0, MA::unit());
  }

  void reset() { pid = 0; }

private:
  np copy_node(np c) {
    if (!c || !PERSISTENT) return c;
    pool[pid].l = c->l, pool[pid].r = c->r;
    pool[pid].x = c->x;
    pool[pid].lazy = c->lazy;
    return &(pool[pid++]);
  }

  void prop(np c, ll l, ll r) {
    assert(r - l >= 2);
    ll m = (l + r) / 2;
    if (c->lazy == MA::unit()) return;
    c->l = (c->l ? copy_node(c->l) : new_node(l, m));
    c->l->x = AM::act(c->l->x, c->lazy, m - l);
    c->l->lazy = MA::op(c->l->lazy, c->lazy);
    c->r = (c->r ? copy_node(c->r) : new_node(m, r));
    c->r->x = AM::act(c->r->x, c->lazy, r - m);
    c->r->lazy = MA::op(c->r->lazy, c->lazy);
    c->lazy = MA::unit();
  }

  np set_rec(np c, ll l, ll r, ll i, const X &x) {
    if (r == l + 1) {
      c = copy_node(c);
      c->x = x;
      c->lazy = MA::unit();
      return c;
    }
    prop(c, l, r);
    ll m = (l + r) / 2;
    if (!c->l) c->l = new_node(l, m);
    if (!c->r) c->r = new_node(m, r);

    c = copy_node(c);
    if (i < m) {
      c->l = set_rec(c->l, l, m, i, x);
    } else {
      c->r = set_rec(c->r, m, r, i, x);
    }
    c->x = MX::op(c->l->x, c->r->x);
    return c;
  }

  np multiply_rec(np c, ll l, ll r, ll i, const X &x) {
    if (r == l + 1) {
      c = copy_node(c);
      c->x = MX::op(c->x, x);
      c->lazy = MA::unit();
      return c;
    }
    prop(c, l, r);
    ll m = (l + r) / 2;
    if (!c->l) c->l = new_node(l, m);
    if (!c->r) c->r = new_node(m, r);

    c = copy_node(c);
    if (i < m) {
      c->l = multiply_rec(c->l, l, m, i, x);
    } else {
      c->r = multiply_rec(c->r, m, r, i, x);
    }
    c->x = MX::op(c->l->x, c->r->x);
    return c;
  }

  void prod_rec(np c, ll l, ll r, ll ql, ll qr, X &x, A lazy) {
    chmax(ql, l);
    chmin(qr, r);
    if (ql >= qr) return;
    if (!c) {
      x = MX::op(x, AM::act(default_prod(ql, qr), lazy, qr - ql));
      return;
    }
    if (l == ql && r == qr) {
      x = MX::op(x, AM::act(c->x, lazy, r - l));
      return;
    }
    ll m = (l + r) / 2;
    lazy = MA::op(c->lazy, lazy);
    prod_rec(c->l, l, m, ql, qr, x, lazy);
    prod_rec(c->r, m, r, ql, qr, x, lazy);
  }

  np apply_rec(np c, ll l, ll r, ll ql, ll qr, const A &a) {
    if (!c) c = new_node(l, r);
    chmax(ql, l);
    chmin(qr, r);
    if (ql >= qr) return c;
    if (l == ql && r == qr) {
      c = copy_node(c);
      c->x = AM::act(c->x, a, r - l);
      c->lazy = MA::op(c->lazy, a);
      return c;
    }
    prop(c, l, r);
    ll m = (l + r) / 2;
    c = copy_node(c);
    c->l = apply_rec(c->l, l, m, ql, qr, a);
    c->r = apply_rec(c->r, m, r, ql, qr, a);
    c->x = MX::op(c->l->x, c->r->x);
    return c;
  }

  template <typename F>
  ll max_right_rec(np c, const F &check, ll l, ll r, ll ql, X &x) {
    if (r <= ql) return r;
    if (!c) c = new_node(l, r);
    chmax(ql, l);
    if (l == ql && check(MX::op(x, c->x))) {
      x = MX::op(x, c->x);
      return r;
    }
    if (r == l + 1) return l;
    prop(c, l, r);
    ll m = (l + r) / 2;
    ll k = max_right_rec(c->l, check, l, m, ql, x);
    if (k < m) return k;
    return max_right_rec(c->r, check, m, r, ql, x);
  }

  template <typename F>
  ll min_left_rec(np c, const F &check, ll l, ll r, ll qr, X &x) {
    if (qr <= l) return l;
    if (!c) c = new_node(l, r);
    chmin(qr, r);
    if (r == qr && check(MX::op(c->x, x))) {
      x = MX::op(c->x, x);
      return l;
    }
    if (r == l + 1) return r;
    prop(c, l, r);
    ll m = (l + r) / 2;
    ll k = min_left_rec(c->r, check, m, r, qr, x);
    if (m < k) return k;
    return min_left_rec(c->l, check, l, m, qr, x);
  }
};
#line 2 "random/base.hpp"

u64 RNG_64() {
  static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL;
  x_ ^= x_ << 7;
  return x_ ^= x_ >> 9;
}

u64 RNG(u64 lim) { return RNG_64() % lim; }

ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 6 "test/1_mytest/dynamic_lazy_segtree.test.cpp"

void test() {
  using AM = ActedMonoid_SumMax_Assign<int, -1>;
  using P = typename AM::X;

  FOR(100) {
    int N = RNG(1, 1000);
    int Q = RNG(1, 1000);

    vc<int> A(N, 10);
    Dynamic_Lazy_SegTree<AM, false> X(20 * Q, 0, N, [](ll l, ll r) -> P { return {10 * (r - l), 10}; });

    auto root = X.new_node(0, N);

    FOR(Q) {
      int t = RNG(0, 4);
      int L = RNG(0, N);
      int R = RNG(0, N);
      if (L > R) swap(L, R);
      ++R;
      if (t == 0) {
        int i = RNG(0, N);
        int x = RNG(1, 100);
        root = X.set(root, i, {x, x});
        A[i] = x;
      }
      if (t == 1) {
        vc<int> B = {A.begin() + L, A.begin() + R};
        assert(X.prod(root, L, R).fi == SUM<int>(B));
        assert(X.prod(root, L, R).se == MAX(B));
      }
      if (t == 2) {
        int x = RNG(1, 100);
        FOR(i, L, R) A[i] = x;
        root = X.apply(root, L, R, x);
      }
      if (t == 3) {
        // max_right
        int LIM = R;
        auto check = [&](auto e) -> bool { return e.se <= LIM; };
        int naive = [&]() -> int {
          ll mx = 0;
          FOR(i, L, N) {
            chmax(mx, A[i]);
            if (mx > LIM) return i;
          }
          return N;
        }();

        assert(naive == X.max_right(root, check, L));
      }
    }
  }
}

void solve() {
  int a, b;
  cin >> a >> b;
  cout << a + b << "\n";
}

signed main() {
  test();
  solve();

  return 0;
}
Back to top page