This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb" #include "my_template.hpp" #include "alg/acted_monoid/summax_assign.hpp" #include "ds/segtree/dynamic_lazy_segtree.hpp" #include "random/base.hpp" void test() { using AM = ActedMonoid_SumMax_Assign<int, -1>; using P = typename AM::X; FOR(100) { int N = RNG(1, 1000); int Q = RNG(1, 1000); vc<int> A(N, 10); Dynamic_Lazy_SegTree<AM, false> X(20 * Q, 0, N, [](ll l, ll r) -> P { return {10 * (r - l), 10}; }); auto root = X.new_node(0, N); FOR(Q) { int t = RNG(0, 4); int L = RNG(0, N); int R = RNG(0, N); if (L > R) swap(L, R); ++R; if (t == 0) { int i = RNG(0, N); int x = RNG(1, 100); root = X.set(root, i, {x, x}); A[i] = x; } if (t == 1) { vc<int> B = {A.begin() + L, A.begin() + R}; assert(X.prod(root, L, R).fi == SUM<int>(B)); assert(X.prod(root, L, R).se == MAX(B)); } if (t == 2) { int x = RNG(1, 100); FOR(i, L, R) A[i] = x; root = X.apply(root, L, R, x); } if (t == 3) { // max_right int LIM = R; auto check = [&](auto e) -> bool { return e.se <= LIM; }; int naive = [&]() -> int { ll mx = 0; FOR(i, L, N) { chmax(mx, A[i]); if (mx > LIM) return i; } return N; }(); assert(naive == X.max_right(root, check, L)); } } } } void solve() { int a, b; cin >> a >> b; cout << a + b << "\n"; } signed main() { test(); solve(); return 0; }
#line 1 "test/1_mytest/dynamic_lazy_segtree.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/aplusb" #line 1 "my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else // https://codeforces.com/blog/entry/96344 #pragma GCC optimize("Ofast,unroll-loops") // いまの CF だとこれ入れると動かない? // #pragma GCC target("avx2,popcnt") #include <bits/stdc++.h> using namespace std; using ll = long long; using u8 = uint8_t; using u16 = uint16_t; using u32 = uint32_t; using u64 = uint64_t; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'010'000'000; template <> constexpr ll infty<ll> = 2'020'000'000'000'000'000; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); } int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); } int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); } int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T kth_bit(int k) { return T(1) << k; } template <typename T> bool has_kth_bit(T x, int k) { return x >> k & 1; } template <typename UINT> struct all_bit { struct iter { UINT s; iter(UINT s) : s(s) {} int operator*() const { return lowbit(s); } iter &operator++() { s &= s - 1; return *this; } bool operator!=(const iter) const { return s != 0; } }; UINT s; all_bit(UINT s) : s(s) {} iter begin() const { return iter(s); } iter end() const { return iter(0); } }; template <typename UINT> struct all_subset { static_assert(is_unsigned<UINT>::value); struct iter { UINT s, t; bool ed; iter(UINT s) : s(s), t(s), ed(0) {} int operator*() const { return s ^ t; } iter &operator++() { (t == 0 ? ed = 1 : t = (t - 1) & s); return *this; } bool operator!=(const iter) const { return !ed; } }; UINT s; all_subset(UINT s) : s(s) {} iter begin() const { return iter(s); } iter end() const { return iter(0); } }; template <typename T> T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); } template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); } template <typename T> pair<T, T> divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } template <typename T, typename... Vectors> void concat(vc<T> &first, const Vectors &... others) { vc<T> &res = first; (res.insert(res.end(), others.begin(), others.end()), ...); } #endif #line 2 "alg/monoid/summax.hpp" template <typename E> struct Monoid_SumMax { using value_type = pair<E, E>; using X = value_type; static X op(X x, X y) { return {x.fi + y.fi, max(x.se, y.se)}; } static X from_element(E e) { return {e, e}; } static constexpr X unit() { return {E(0), -infty<E>}; } static constexpr bool commute = 1; }; #line 2 "alg/monoid/assign.hpp" template <typename X, int none_val> struct Monoid_Assign { using value_type = X; static X op(X x, X y) { return (y == X(none_val) ? x : y); } static constexpr X unit() { return X(none_val); } static constexpr bool commute = false; }; #line 3 "alg/acted_monoid/summax_assign.hpp" template <typename E, E none_val> struct ActedMonoid_SumMax_Assign { using Monoid_X = Monoid_SumMax<E>; using Monoid_A = Monoid_Assign<E, none_val>; using X = typename Monoid_X::value_type; using A = typename Monoid_A::value_type; static constexpr X act(const X& x, const A& a, const ll& size) { if (a == Monoid_A::unit()) return x; return {E(size) * a, a}; } }; #line 2 "ds/segtree/dynamic_lazy_segtree.hpp" // Q*2logN 程度必要 template <typename ActedMonoid, bool PERSISTENT> struct Dynamic_Lazy_SegTree { using AM = ActedMonoid; using MX = typename AM::Monoid_X; using MA = typename AM::Monoid_A; using X = typename AM::X; using A = typename AM::A; using F = function<X(ll, ll)>; F default_prod; struct Node { Node *l, *r; X x; A lazy; }; const int NODES; const ll L0, R0; Node *pool; int pid; using np = Node *; Dynamic_Lazy_SegTree( int NODES, ll L0, ll R0, F default_prod = [](ll, ll) -> X { return MX::unit(); }) : default_prod(default_prod), NODES(NODES), L0(L0), R0(R0), pid(0) { pool = new Node[NODES]; } ~Dynamic_Lazy_SegTree() { delete[] pool; } np new_root() { return new_node(L0, R0); } np new_node(const X x) { assert(pid < NODES); pool[pid].l = pool[pid].r = nullptr; pool[pid].x = x; pool[pid].lazy = MA::unit(); return &(pool[pid++]); } np new_node(ll l, ll r) { return new_node(default_prod(l, r)); } np new_node() { return new_node(L0, R0); } np new_node(const vc<X> &dat) { assert(L0 == 0 && R0 == len(dat)); auto dfs = [&](auto &dfs, ll l, ll r) -> Node * { if (l == r) return nullptr; if (r == l + 1) return new_node(dat[l]); ll m = (l + r) / 2; np l_root = dfs(dfs, l, m), r_root = dfs(dfs, m, r); X x = MX::op(l_root->x, r_root->x); np root = new_node(x); root->l = l_root, root->r = r_root; return root; }; return dfs(dfs, 0, len(dat)); } X prod(np root, ll l, ll r) { if (l == r || !root) return MX::unit(); assert(pid && L0 <= l && l < r && r <= R0); X x = MX::unit(); prod_rec(root, L0, R0, l, r, x, MA::unit()); return x; } X prod_all(np root) { return prod(root, L0, R0); } np set(np root, ll i, const X &x) { assert(pid && L0 <= i && i < R0); return set_rec(root, L0, R0, i, x); } np multiply(np root, ll i, const X &x) { assert(pid && L0 <= i && i < R0); return multiply_rec(root, L0, R0, i, x); } np apply(np root, ll l, ll r, const A &a) { if (l == r) return root; assert(pid && L0 <= l && l < r && r <= R0); return apply_rec(root, L0, R0, l, r, a); } template <typename F> ll max_right(np root, F check, ll L) { assert(pid && L0 <= L && L <= R0 && check(MX::unit())); X x = MX::unit(); return max_right_rec(root, check, L0, R0, L, x); } template <typename F> ll min_left(np root, F check, ll R) { assert(pid && L0 <= R && R <= R0 && check(MX::unit())); X x = MX::unit(); return min_left_rec(root, check, L0, R0, R, x); } // f(idx, val) template <typename F> void enumerate(np root, F f) { auto dfs = [&](auto &dfs, np c, ll l, ll r, A a) -> void { if (!c) return; if (r - l == 1) { f(l, AM::act(c->x, a, 1)); return; } ll m = (l + r) / 2; a = MA::op(c->lazy, a); dfs(dfs, c->l, l, m, a); dfs(dfs, c->r, m, r, a); }; dfs(dfs, root, L0, R0, MA::unit()); } void reset() { pid = 0; } private: np copy_node(np c) { if (!c || !PERSISTENT) return c; pool[pid].l = c->l, pool[pid].r = c->r; pool[pid].x = c->x; pool[pid].lazy = c->lazy; return &(pool[pid++]); } void prop(np c, ll l, ll r) { assert(r - l >= 2); ll m = (l + r) / 2; if (c->lazy == MA::unit()) return; c->l = (c->l ? copy_node(c->l) : new_node(l, m)); c->l->x = AM::act(c->l->x, c->lazy, m - l); c->l->lazy = MA::op(c->l->lazy, c->lazy); c->r = (c->r ? copy_node(c->r) : new_node(m, r)); c->r->x = AM::act(c->r->x, c->lazy, r - m); c->r->lazy = MA::op(c->r->lazy, c->lazy); c->lazy = MA::unit(); } np set_rec(np c, ll l, ll r, ll i, const X &x) { if (r == l + 1) { c = copy_node(c); c->x = x; c->lazy = MA::unit(); return c; } prop(c, l, r); ll m = (l + r) / 2; if (!c->l) c->l = new_node(l, m); if (!c->r) c->r = new_node(m, r); c = copy_node(c); if (i < m) { c->l = set_rec(c->l, l, m, i, x); } else { c->r = set_rec(c->r, m, r, i, x); } c->x = MX::op(c->l->x, c->r->x); return c; } np multiply_rec(np c, ll l, ll r, ll i, const X &x) { if (r == l + 1) { c = copy_node(c); c->x = MX::op(c->x, x); c->lazy = MA::unit(); return c; } prop(c, l, r); ll m = (l + r) / 2; if (!c->l) c->l = new_node(l, m); if (!c->r) c->r = new_node(m, r); c = copy_node(c); if (i < m) { c->l = multiply_rec(c->l, l, m, i, x); } else { c->r = multiply_rec(c->r, m, r, i, x); } c->x = MX::op(c->l->x, c->r->x); return c; } void prod_rec(np c, ll l, ll r, ll ql, ll qr, X &x, A lazy) { chmax(ql, l); chmin(qr, r); if (ql >= qr) return; if (!c) { x = MX::op(x, AM::act(default_prod(ql, qr), lazy, qr - ql)); return; } if (l == ql && r == qr) { x = MX::op(x, AM::act(c->x, lazy, r - l)); return; } ll m = (l + r) / 2; lazy = MA::op(c->lazy, lazy); prod_rec(c->l, l, m, ql, qr, x, lazy); prod_rec(c->r, m, r, ql, qr, x, lazy); } np apply_rec(np c, ll l, ll r, ll ql, ll qr, const A &a) { if (!c) c = new_node(l, r); chmax(ql, l); chmin(qr, r); if (ql >= qr) return c; if (l == ql && r == qr) { c = copy_node(c); c->x = AM::act(c->x, a, r - l); c->lazy = MA::op(c->lazy, a); return c; } prop(c, l, r); ll m = (l + r) / 2; c = copy_node(c); c->l = apply_rec(c->l, l, m, ql, qr, a); c->r = apply_rec(c->r, m, r, ql, qr, a); c->x = MX::op(c->l->x, c->r->x); return c; } template <typename F> ll max_right_rec(np c, const F &check, ll l, ll r, ll ql, X &x) { if (r <= ql) return r; if (!c) c = new_node(l, r); chmax(ql, l); if (l == ql && check(MX::op(x, c->x))) { x = MX::op(x, c->x); return r; } if (r == l + 1) return l; prop(c, l, r); ll m = (l + r) / 2; ll k = max_right_rec(c->l, check, l, m, ql, x); if (k < m) return k; return max_right_rec(c->r, check, m, r, ql, x); } template <typename F> ll min_left_rec(np c, const F &check, ll l, ll r, ll qr, X &x) { if (qr <= l) return l; if (!c) c = new_node(l, r); chmin(qr, r); if (r == qr && check(MX::op(c->x, x))) { x = MX::op(c->x, x); return l; } if (r == l + 1) return r; prop(c, l, r); ll m = (l + r) / 2; ll k = min_left_rec(c->r, check, m, r, qr, x); if (m < k) return k; return min_left_rec(c->l, check, l, m, qr, x); } }; #line 2 "random/base.hpp" u64 RNG_64() { static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL; x_ ^= x_ << 7; return x_ ^= x_ >> 9; } u64 RNG(u64 lim) { return RNG_64() % lim; } ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); } #line 6 "test/1_mytest/dynamic_lazy_segtree.test.cpp" void test() { using AM = ActedMonoid_SumMax_Assign<int, -1>; using P = typename AM::X; FOR(100) { int N = RNG(1, 1000); int Q = RNG(1, 1000); vc<int> A(N, 10); Dynamic_Lazy_SegTree<AM, false> X(20 * Q, 0, N, [](ll l, ll r) -> P { return {10 * (r - l), 10}; }); auto root = X.new_node(0, N); FOR(Q) { int t = RNG(0, 4); int L = RNG(0, N); int R = RNG(0, N); if (L > R) swap(L, R); ++R; if (t == 0) { int i = RNG(0, N); int x = RNG(1, 100); root = X.set(root, i, {x, x}); A[i] = x; } if (t == 1) { vc<int> B = {A.begin() + L, A.begin() + R}; assert(X.prod(root, L, R).fi == SUM<int>(B)); assert(X.prod(root, L, R).se == MAX(B)); } if (t == 2) { int x = RNG(1, 100); FOR(i, L, R) A[i] = x; root = X.apply(root, L, R, x); } if (t == 3) { // max_right int LIM = R; auto check = [&](auto e) -> bool { return e.se <= LIM; }; int naive = [&]() -> int { ll mx = 0; FOR(i, L, N) { chmax(mx, A[i]); if (mx > LIM) return i; } return N; }(); assert(naive == X.max_right(root, check, L)); } } } } void solve() { int a, b; cin >> a >> b; cout << a + b << "\n"; } signed main() { test(); solve(); return 0; }