library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub maspypy/library

:heavy_check_mark: test/1_mytest/count_lattice_point_in_convex_polygon.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"

#include "my_template.hpp"

#include "random/base.hpp"
#include "convex/count_lattice_point_in_convex_polygon.hpp"

void test() {
  ll N = RNG(0, 7);
  vc<tuple<ll, ll, ll>> LINE;
  FOR(N) {
    while (1) {
      ll a = RNG(-3, 4);
      ll b = RNG(-3, 4);
      if (a == 0 && b == 0) continue;
      ll c = RNG(-30, 31);
      LINE.eb(a, b, c);
      break;
    }
  }
  ll L = RNG(-30, 31);
  ll R = RNG(-30, 31);
  if (L > R) swap(L, R);
  ++R;

  ll god = 0;
  FOR(x, L, R) {
    ll mi = -infty<ll>, ma = infty<ll>;
    for (auto& [a, b, c]: LINE) {
      if (b == 0) {
        // ax>=c
        if (a * x <= c) continue;
        mi = infty<ll> + 1;
        break;
      }
      if (b > 0) {
        // ax+by<=c
        // by<=c-ax
        chmin(ma, floor<ll>(c - a * x, b));
      }
      if (b < 0) { chmax(mi, ceil<ll>(a * x - c, -b)); }
    }

    if (mi > ma) continue;
    if (mi == -infty<ll> || ma == infty<ll>) {
      god = -1;
      break;
    }
    god += ma - mi + 1;
  }

  ll ANS = count_lattice_point_in_convex_polygon(L, R, LINE);
  assert(god == ANS);
}

void solve() {
  int a, b;
  cin >> a >> b;
  cout << a + b << "\n";
}

signed main() {
  FOR(1000000) test();

  solve();

  return 0;
}
#line 1 "test/1_mytest/count_lattice_point_in_convex_polygon.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"

#line 1 "my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
// https://codeforces.com/blog/entry/126772?#comment-1154880
#include <bits/allocator.h>
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
  vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T kth_bit(int k) {
  return T(1) << k;
}
template <typename T>
bool has_kth_bit(T x, int k) {
  return x >> k & 1;
}

template <typename UINT>
struct all_bit {
  struct iter {
    UINT s;
    iter(UINT s) : s(s) {}
    int operator*() const { return lowbit(s); }
    iter &operator++() {
      s &= s - 1;
      return *this;
    }
    bool operator!=(const iter) const { return s != 0; }
  };
  UINT s;
  all_bit(UINT s) : s(s) {}
  iter begin() const { return iter(s); }
  iter end() const { return iter(0); }
};

template <typename UINT>
struct all_subset {
  static_assert(is_unsigned<UINT>::value);
  struct iter {
    UINT s, t;
    bool ed;
    iter(UINT s) : s(s), t(s), ed(0) {}
    int operator*() const { return s ^ t; }
    iter &operator++() {
      (t == 0 ? ed = 1 : t = (t - 1) & s);
      return *this;
    }
    bool operator!=(const iter) const { return !ed; }
  };
  UINT s;
  all_subset(UINT s) : s(s) {}
  iter begin() const { return iter(s); }
  iter end() const { return iter(0); }
};

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
  vc<T> &res = first;
  (res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 4 "test/1_mytest/count_lattice_point_in_convex_polygon.test.cpp"

#line 2 "random/base.hpp"

u64 RNG_64() {
  static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL;
  x_ ^= x_ << 7;
  return x_ ^= x_ >> 9;
}

u64 RNG(u64 lim) { return RNG_64() % lim; }

ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "geo/convex_hull.hpp"

#line 2 "geo/base.hpp"
template <typename T>
struct Point {
  T x, y;

  Point() : x(0), y(0) {}

  template <typename A, typename B>
  Point(A x, B y) : x(x), y(y) {}

  template <typename A, typename B>
  Point(pair<A, B> p) : x(p.fi), y(p.se) {}

  Point operator+=(const Point p) {
    x += p.x, y += p.y;
    return *this;
  }
  Point operator-=(const Point p) {
    x -= p.x, y -= p.y;
    return *this;
  }
  Point operator+(Point p) const { return {x + p.x, y + p.y}; }
  Point operator-(Point p) const { return {x - p.x, y - p.y}; }
  bool operator==(Point p) const { return x == p.x && y == p.y; }
  bool operator!=(Point p) const { return x != p.x || y != p.y; }
  Point operator-() const { return {-x, -y}; }
  Point operator*(T t) const { return {x * t, y * t}; }
  Point operator/(T t) const { return {x / t, y / t}; }

  bool operator<(Point p) const {
    if (x != p.x) return x < p.x;
    return y < p.y;
  }
  T dot(const Point& other) const { return x * other.x + y * other.y; }
  T det(const Point& other) const { return x * other.y - y * other.x; }

  double norm() { return sqrtl(x * x + y * y); }
  double angle() { return atan2(y, x); }

  Point rotate(double theta) {
    static_assert(!is_integral<T>::value);
    double c = cos(theta), s = sin(theta);
    return Point{c * x - s * y, s * x + c * y};
  }
  Point rot90(bool ccw) { return (ccw ? Point{-y, x} : Point{y, -x}); }
};

#ifdef FASTIO
template <typename T>
void rd(Point<T>& p) {
  fastio::rd(p.x), fastio::rd(p.y);
}
template <typename T>
void wt(Point<T>& p) {
  fastio::wt(p.x);
  fastio::wt(' ');
  fastio::wt(p.y);
}
#endif

// A -> B -> C と進むときに、左に曲がるならば +1、右に曲がるならば -1
template <typename T>
int ccw(Point<T> A, Point<T> B, Point<T> C) {
  T x = (B - A).det(C - A);
  if (x > 0) return 1;
  if (x < 0) return -1;
  return 0;
}

template <typename REAL, typename T, typename U>
REAL dist(Point<T> A, Point<U> B) {
  REAL dx = REAL(A.x) - REAL(B.x);
  REAL dy = REAL(A.y) - REAL(B.y);
  return sqrt(dx * dx + dy * dy);
}

// ax+by+c
template <typename T>
struct Line {
  T a, b, c;

  Line(T a, T b, T c) : a(a), b(b), c(c) {}
  Line(Point<T> A, Point<T> B) { a = A.y - B.y, b = B.x - A.x, c = A.x * B.y - A.y * B.x; }
  Line(T x1, T y1, T x2, T y2) : Line(Point<T>(x1, y1), Point<T>(x2, y2)) {}

  template <typename U>
  U eval(Point<U> P) {
    return a * P.x + b * P.y + c;
  }

  template <typename U>
  T eval(U x, U y) {
    return a * x + b * y + c;
  }

  // 同じ直線が同じ a,b,c で表現されるようにする
  void normalize() {
    static_assert(is_same_v<T, int> || is_same_v<T, long long>);
    T g = gcd(gcd(abs(a), abs(b)), abs(c));
    a /= g, b /= g, c /= g;
    if (b < 0) { a = -a, b = -b, c = -c; }
    if (b == 0 && a < 0) { a = -a, b = -b, c = -c; }
  }

  bool is_parallel(Line other) { return a * other.b - b * other.a == 0; }
  bool is_orthogonal(Line other) { return a * other.a + b * other.b == 0; }
};

template <typename T>
struct Segment {
  Point<T> A, B;

  Segment(Point<T> A, Point<T> B) : A(A), B(B) {}
  Segment(T x1, T y1, T x2, T y2) : Segment(Point<T>(x1, y1), Point<T>(x2, y2)) {}

  bool contain(Point<T> C) {
    T det = (C - A).det(B - A);
    if (det != 0) return 0;
    return (C - A).dot(B - A) >= 0 && (C - B).dot(A - B) >= 0;
  }

  Line<T> to_Line() { return Line(A, B); }
};

template <typename REAL>
struct Circle {
  Point<REAL> O;
  REAL r;
  Circle(Point<REAL> O, REAL r) : O(O), r(r) {}
  Circle(REAL x, REAL y, REAL r) : O(x, y), r(r) {}
  template <typename T>
  bool contain(Point<T> p) {
    REAL dx = p.x - O.x, dy = p.y - O.y;
    return dx * dx + dy * dy <= r * r;
  }
};
#line 4 "geo/convex_hull.hpp"

// allow_180=true で同一座標点があるとこわれる
// full なら I[0] が sorted で min になる
template <typename T, bool allow_180 = false>
vector<int> ConvexHull(vector<Point<T>>& XY, string mode = "full", bool sorted = false) {
  assert(mode == "full" || mode == "lower" || mode == "upper");
  ll N = XY.size();
  if (N == 1) return {0};
  if (N == 2) {
    if (XY[0] < XY[1]) return {0, 1};
    if (XY[1] < XY[0]) return {1, 0};
    return {0};
  }
  vc<int> I(N);
  if (sorted) {
    FOR(i, N) I[i] = i;
  } else {
    I = argsort(XY);
  }
  if constexpr (allow_180) { FOR(i, N - 1) assert(XY[i] != XY[i + 1]); }

  auto check = [&](ll i, ll j, ll k) -> bool {
    T det = (XY[j] - XY[i]).det(XY[k] - XY[i]);
    if constexpr (allow_180) return det >= 0;
    return det > T(0);
  };

  auto calc = [&]() {
    vector<int> P;
    for (auto&& k: I) {
      while (P.size() > 1) {
        auto i = P[P.size() - 2];
        auto j = P[P.size() - 1];
        if (check(i, j, k)) break;
        P.pop_back();
      }
      P.eb(k);
    }
    return P;
  };

  vc<int> P;
  if (mode == "full" || mode == "lower") {
    vc<int> Q = calc();
    P.insert(P.end(), all(Q));
  }
  if (mode == "full" || mode == "upper") {
    if (!P.empty()) P.pop_back();
    reverse(all(I));
    vc<int> Q = calc();
    P.insert(P.end(), all(Q));
  }
  if (mode == "upper") reverse(all(P));
  while (len(P) >= 2 && XY[P[0]] == XY[P.back()]) P.pop_back();
  return P;
}
#line 2 "convex/line_min_function.hpp"

// 1 次関数の max を [L,R,a,b] の列として出力
// https://qoj.ac/contest/1576/problem/8505
template <typename Re, typename T>
vc<tuple<Re, Re, Re, Re>> line_min_function_real(vc<pair<T, T>> LINE) {
  assert(!LINE.empty());
  using P = Point<T>;
  vc<P> point;
  for (auto& [x, y]: LINE) point.eb(P(x, y));
  auto I = ConvexHull(point, "lower");
  point = rearrange(point, I);
  int N = len(point);
  if (N >= 2 && point[N - 1].x == point[N - 2].x) { POP(point), --N; }
  reverse(all(point)); // 傾きは大きい方から
  Re l = -infty<Re>;
  vc<tuple<Re, Re, Re, Re>> ANS;
  FOR(i, N) {
    Re r = infty<Re>;
    auto [a, b] = point[i];
    if (i + 1 < N) {
      auto [c, d] = point[i + 1];
      if (a == c) continue;
      assert(a > c);
      r = Re(d - b) / (a - c);
      chmax(r, l), chmin(r, infty<Re>);
    }
    if (l < r) ANS.eb(l, r, a, b), l = r;
  }
  return ANS;
}

// 1 次関数の max を [L,R,a,b] の列として出力
template <typename Re, typename T>
vc<tuple<Re, Re, Re, Re>> line_max_function_real(vc<pair<T, T>> LINE) {
  assert(!LINE.empty());
  for (auto& [a, b]: LINE) a = -a, b = -b;
  auto ANS = line_min_function_real<Re, T>(LINE);
  for (auto& [l, r, a, b]: ANS) a = -a, b = -b;
  return ANS;
}

// LINE(a,b,c): y=(ax+b)/c, 評価点は整数
// 1 次関数の min を [L,R,a,b,c] の列として出力
// オーバーフロー安全
vc<tuple<ll, ll, ll, ll, ll>> line_min_function_rational(vc<tuple<ll, ll, ll>> LINE, ll L, ll R) {
  // 傾き降順
  sort(all(LINE), [&](auto& L, auto& R) -> bool {
    auto& [a1, b1, c1] = L;
    auto& [a2, b2, c2] = R;
    return i128(a1) * c2 > i128(a2) * c1;
  });
  vc<tuple<ll, ll, ll, ll, ll>> ANS;
  for (auto& [a2, b2, c2]: LINE) {
    while (1) {
      if (ANS.empty()) {
        ANS.eb(L, R, a2, b2, c2);
        break;
      }
      auto& [L1, R1, a1, b1, c1] = ANS.back();
      i128 s = i128(c2) * a1 - i128(a2) * c1; // >= 0
      i128 t = i128(b2) * c1 - i128(b1) * c2;
      if (s == 0) {
        // 平行なので小さい方だけを残す
        if (t >= 0) break;
        ANS.pop_back();
        if (len(ANS)) get<1>(ANS.back()) = R;
        continue;
      }
      i128 x = ceil<i128>(t, s);
      // x 以上で 2 の方が下に来る
      if (x <= L1) {
        ANS.pop_back();
        continue;
      }
      if (x < R) {
        R1 = x;
        ANS.eb(x, R, a2, b2, c2);
        break;
      } else {
        break;
      }
    }
  }
  return ANS;
}

// LINE(a,b,c): y=(ax+b)/c, 評価点は整数
// 1 次関数の max を [L,R,a,b,c] の列として出力
// オーバーフロー安全
vc<tuple<ll, ll, ll, ll, ll>> line_max_function_rational(vc<tuple<ll, ll, ll>> LINE, ll L, ll R) {
  for (auto& [a, b, c]: LINE) a = -a, b = -b;
  auto ANS = line_min_function_rational(LINE, L, R);
  for (auto& [L, R, a, b, c]: ANS) a = -a, b = -b;
  return ANS;
}

// LINE(a,b): y=ax+b, 評価点は整数
// 1 次関数の min を [L,R,a,b] の列として出力
// オーバーフロー安全
vc<tuple<ll, ll, ll, ll>> line_min_function_integer(vc<pair<ll, ll>> LINE, ll L, ll R) {
  // 傾き降順
  sort(all(LINE), [&](auto& L, auto& R) -> bool {
    auto& [a1, b1] = L;
    auto& [a2, b2] = R;
    return a1 > a2;
  });
  vc<tuple<ll, ll, ll, ll>> ANS;
  for (auto& [a2, b2]: LINE) {
    while (1) {
      if (ANS.empty()) {
        ANS.eb(L, R, a2, b2);
        break;
      }
      auto& [L1, R1, a1, b1] = ANS.back();
      if (a1 == a2) {
        if (b1 <= b2) break;
        ANS.pop_back();
        if (len(ANS)) get<1>(ANS.back()) = R;
        continue;
      }
      ll x = ceil<ll>(b2 - b1, a1 - a2);
      // x 以上で 2 の方が下に来る
      if (x <= L1) {
        ANS.pop_back();
        continue;
      }
      if (x < R) {
        R1 = x;
        ANS.eb(x, R, a2, b2);
        break;
      } else {
        break;
      }
    }
  }
  return ANS;
}

// LINE(a,b,c): y=(ax+b)/c, 評価点は整数
// 1 次関数の min を [L,R,a,b,c] の列として出力
// c>0, (ax+b)c がオーバーフローしない,
vc<tuple<ll, ll, ll, ll>> line_max_function_integer(vc<pair<ll, ll>> LINE, ll L, ll R) {
  for (auto& [a, b]: LINE) a = -a, b = -b;
  auto ANS = line_min_function_integer(LINE, L, R);
  for (auto& [L, R, a, b]: ANS) a = -a, b = -b;
  return ANS;
}

// (L,R,func) の下側と上側をマージするときなどに使う用
template <typename T>
vc<tuple<T, T, T, T, T, T>> merge_46(vc<tuple<T, T, T, T>> A, vc<tuple<T, T, T, T>> B) {
  vc<tuple<T, T, T, T, T, T>> ANS;
  reverse(all(A));
  reverse(all(B));
  while (len(A) && len(B)) {
    auto& [l1, r1, a1, b1] = A.back();
    auto& [l2, r2, a2, b2] = B.back();
    assert(l1 == l2);
    T r = min(r1, r2);
    ANS.eb(l1, r, a1, b1, a2, b2);
    l1 = r, l2 = r;
    if (r1 == r) POP(A);
    if (r2 == r) POP(B);
  };
  return ANS;
}

// (L,R,func) の下側と上側をマージするときなどに使う用
// f(L,R,a1,b1,a2,b2)
template <typename T, typename F>
void merge_46(const vc<tuple<T, T, T, T>>& A, const vc<tuple<T, T, T, T>>& B, F f) {
  int i = 0, j = 0;
  while (i < len(A) && j < len(B)) {
    auto& [l1, r1, a1, b1] = A[i];
    auto& [l2, r2, a2, b2] = B[j];
    T l = max(l1, l2), r = min(r1, r2);
    if (l < r) f(l, r, a1, b1, a2, b2);
    (r1 < r2 ? i : j)++;
  }
}

// (L,R,func) の下側と上側をマージするときなどに使う用
// f(L,R,a1,b1,a2,b2)
template <typename T, typename F>
void merge_58(const vc<tuple<T, T, T, T, T>>& A, const vc<tuple<T, T, T, T, T>>& B, F f) {
  int i = 0, j = 0;
  while (i < len(A) && j < len(B)) {
    auto& [l1, r1, a1, b1, c1] = A[i];
    auto& [l2, r2, a2, b2, c2] = B[j];
    T l = max(l1, l2), r = min(r1, r2);
    if (l < r) f(l, r, a1, b1, c1, a2, b2, c2);
    (r1 < r2 ? i : j)++;
  }
}
#line 2 "mod/floor_sum_of_linear.hpp"

// sum_{x in [L,R)} floor(ax + b, mod)
// I は範囲内で ax+b がオーバーフローしない程度
template <typename O = i128, typename I = long long>
O floor_sum_of_linear(I L, I R, I a, I b, I mod) {
  assert(L <= R);
  O res = 0;
  b += L * a;
  I N = R - L;

  if (b < 0) {
    I k = ceil(-b, mod);
    b += k * mod;
    res -= O(N) * O(k);
  }

  while (N) {
    I q;
    tie(q, a) = divmod(a, mod);
    res += (N & 1 ? O(N) * O((N - 1) / 2) * O(q) : O(N / 2) * O(N - 1) * O(q));
    if (b >= mod) {
      tie(q, b) = divmod(b, mod);
      res += O(N) * q;
    }
    tie(N, b) = divmod(a * N + b, mod);
    tie(a, mod) = mp(mod, a);
  }
  return res;
}
#line 3 "convex/count_lattice_point_in_convex_polygon.hpp"

// L<=x<R, ax+by<=c という半平面たち
// 有界でないときは -1 を返す
// 入力が pow(10,18) 以下とかであればオーバーフローしないつもり
i128 count_lattice_point_in_convex_polygon(ll L, ll R, vc<tuple<ll, ll, ll>> LINE) {
  vc<tuple<ll, ll, ll>> LINE1, LINE2;
  for (auto& [a, b, c]: LINE) {
    if (b == 0) {
      // ax<=c
      assert(a != 0);
      if (a > 0) { chmin(R, floor<ll>(c, a) + 1); }
      elif (a < 0) { chmax(L, ceil<ll>(-c, -a)); }
    } else {
      if (b > 0) {
        LINE2.eb(-a, c, b);
      } else {
        LINE1.eb(a, -c, -b);
      }
    }
  }
  if (L >= R) return 0;
  if (LINE1.empty() || LINE2.empty()) return -1;

  auto LOWER = line_max_function_rational(LINE1, L, R);
  auto UPPER = line_min_function_rational(LINE2, L, R);

  i128 ANS = 0;

  auto wk = [&](ll L, ll R, ll a1, ll b1, ll c1, ll a2, ll b2, ll c2) -> void {
    // 交点 t/s
    i128 s = i128(a2) * c1 - i128(a1) * c2;
    i128 t = i128(b1) * c2 - i128(b2) * c1;
    if (s == 0) {
      if (t > 0) return;
    }
    elif (s > 0) {
      // 上側の方が傾きが大きい
      i128 x = ceil<i128>(t, s);
      chmax(L, x);
    }
    else {
      i128 x = floor<i128>(-t, -s);
      chmin(R, x + 1);
    }
    if (L >= R) return;
    ANS += floor_sum_of_linear<i128, i128>(L, R, a2, b2, c2);
    ANS -= floor_sum_of_linear<i128, i128>(L, R, a1, b1 - 1, c1);
  };

  merge_58(LOWER, UPPER, wk);

  // reverse(all(LOWER));
  // reverse(all(UPPER));
  // while (len(LOWER) && len(UPPER)) {
  //   auto [L1, R1, a1, b1, c1] = POP(LOWER);
  //   auto [L2, R2, a2, b2, c2] = POP(UPPER);
  //   assert(L1 == L2);
  //   ll R = min(R1, R2);
  //   wk(L1, R, a1, b1, c1, a2, b2, c2);
  //   if (R < R1) LOWER.eb(R, R1, a1, b1, c1);
  //   if (R < R2) UPPER.eb(R, R2, a2, b2, c2);
  // }

  // for (auto& [L, R, a1, b1, c1, a2, b2, c2]: merge_58<ll>(LOWER, UPPER)) { wk(L, R, a1, b1, c1, a2, b2, c2); }
  return ANS;
}
#line 7 "test/1_mytest/count_lattice_point_in_convex_polygon.test.cpp"

void test() {
  ll N = RNG(0, 7);
  vc<tuple<ll, ll, ll>> LINE;
  FOR(N) {
    while (1) {
      ll a = RNG(-3, 4);
      ll b = RNG(-3, 4);
      if (a == 0 && b == 0) continue;
      ll c = RNG(-30, 31);
      LINE.eb(a, b, c);
      break;
    }
  }
  ll L = RNG(-30, 31);
  ll R = RNG(-30, 31);
  if (L > R) swap(L, R);
  ++R;

  ll god = 0;
  FOR(x, L, R) {
    ll mi = -infty<ll>, ma = infty<ll>;
    for (auto& [a, b, c]: LINE) {
      if (b == 0) {
        // ax>=c
        if (a * x <= c) continue;
        mi = infty<ll> + 1;
        break;
      }
      if (b > 0) {
        // ax+by<=c
        // by<=c-ax
        chmin(ma, floor<ll>(c - a * x, b));
      }
      if (b < 0) { chmax(mi, ceil<ll>(a * x - c, -b)); }
    }

    if (mi > ma) continue;
    if (mi == -infty<ll> || ma == infty<ll>) {
      god = -1;
      break;
    }
    god += ma - mi + 1;
  }

  ll ANS = count_lattice_point_in_convex_polygon(L, R, LINE);
  assert(god == ANS);
}

void solve() {
  int a, b;
  cin >> a >> b;
  cout << a + b << "\n";
}

signed main() {
  FOR(1000000) test();

  solve();

  return 0;
}
Back to top page