This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb" #include "my_template.hpp" #include "random/random_matrix.hpp" #include "linalg/blackbox/solve_linear.hpp" using mint = modint998; void test() { FOR(100) { FOR(N, 1, 10) FOR(M, 1, 10) FOR(R, 0, 10) { if (R > N || R > M) continue; vvc<mint> A = random_matrix<mint>(N, M, R); vc<tuple<int, int, mint>> mat; FOR(i, N) FOR(j, M) mat.eb(i, j, A[i][j]); vc<mint> x(N), y(M); FOR(i, M) y[i] = RNG(0, mint::get_mod()); FOR(i, N) FOR(j, M) x[i] += A[i][j] * y[j]; if (RNG(0, 2) == 0) { FOR(i, M) y[i] = RNG(0, 2); } int fail = 0; FOR(5) { vc<mint> ans = sparse_solve_linear<mint>(N, M, mat, x); if (ans.empty()) ++fail; } assert(fail <= 1); } } } void solve() { int a, b; cin >> a >> b; cout << a + b << "\n"; } signed main() { test(); solve(); return 0; }
#line 1 "test/1_mytest/blackbox_solve_linear.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/aplusb" #line 1 "my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else // https://codeforces.com/blog/entry/96344 #pragma GCC optimize("Ofast,unroll-loops") // いまの CF だとこれ入れると動かない? // #pragma GCC target("avx2,popcnt") #include <bits/stdc++.h> using namespace std; using ll = long long; using u8 = uint8_t; using u16 = uint16_t; using u32 = uint32_t; using u64 = uint64_t; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'010'000'000; template <> constexpr ll infty<ll> = 2'020'000'000'000'000'000; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); } int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); } int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); } int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T kth_bit(int k) { return T(1) << k; } template <typename T> bool has_kth_bit(T x, int k) { return x >> k & 1; } template <typename UINT> struct all_bit { struct iter { UINT s; iter(UINT s) : s(s) {} int operator*() const { return lowbit(s); } iter &operator++() { s &= s - 1; return *this; } bool operator!=(const iter) const { return s != 0; } }; UINT s; all_bit(UINT s) : s(s) {} iter begin() const { return iter(s); } iter end() const { return iter(0); } }; template <typename UINT> struct all_subset { static_assert(is_unsigned<UINT>::value); struct iter { UINT s, t; bool ed; iter(UINT s) : s(s), t(s), ed(0) {} int operator*() const { return s ^ t; } iter &operator++() { (t == 0 ? ed = 1 : t = (t - 1) & s); return *this; } bool operator!=(const iter) const { return !ed; } }; UINT s; all_subset(UINT s) : s(s) {} iter begin() const { return iter(s); } iter end() const { return iter(0); } }; template <typename T> T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); } template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); } template <typename T> pair<T, T> divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } template <typename T, typename... Vectors> void concat(vc<T> &first, const Vectors &... others) { vc<T> &res = first; (res.insert(res.end(), others.begin(), others.end()), ...); } #endif #line 4 "test/1_mytest/blackbox_solve_linear.test.cpp" #line 1 "random/random_matrix.hpp" #line 2 "random/base.hpp" u64 RNG_64() { static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL; x_ ^= x_ << 7; return x_ ^= x_ >> 9; } u64 RNG(u64 lim) { return RNG_64() % lim; } ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); } #line 2 "mod/barrett.hpp" // https://github.com/atcoder/ac-library/blob/master/atcoder/internal_math.hpp struct Barrett { u32 m; u64 im; explicit Barrett(u32 m = 1) : m(m), im(u64(-1) / m + 1) {} u32 umod() const { return m; } u32 modulo(u64 z) { if (m == 1) return 0; u64 x = (u64)(((unsigned __int128)(z)*im) >> 64); u64 y = x * m; return (z - y + (z < y ? m : 0)); } u64 floor(u64 z) { if (m == 1) return z; u64 x = (u64)(((unsigned __int128)(z)*im) >> 64); u64 y = x * m; return (z < y ? x - 1 : x); } pair<u64, u32> divmod(u64 z) { if (m == 1) return {z, 0}; u64 x = (u64)(((unsigned __int128)(z)*im) >> 64); u64 y = x * m; if (z < y) return {x - 1, z - y + m}; return {x, z - y}; } u32 mul(u32 a, u32 b) { return modulo(u64(a) * b); } }; struct Barrett_64 { u128 mod, mh, ml; explicit Barrett_64(u64 mod = 1) : mod(mod) { u128 m = u128(-1) / mod; if (m * mod + mod == u128(0)) ++m; mh = m >> 64; ml = m & u64(-1); } u64 umod() const { return mod; } u64 modulo(u128 x) { u128 z = (x & u64(-1)) * ml; z = (x & u64(-1)) * mh + (x >> 64) * ml + (z >> 64); z = (x >> 64) * mh + (z >> 64); x -= z * mod; return x < mod ? x : x - mod; } u64 mul(u64 a, u64 b) { return modulo(u128(a) * b); } }; #line 2 "linalg/det.hpp" int det_mod(vvc<int> A, int mod) { Barrett bt(mod); const int n = len(A); ll det = 1; FOR(i, n) { FOR(j, i, n) { if (A[j][i] == 0) continue; if (i != j) { swap(A[i], A[j]), det = mod - det; } break; } FOR(j, i + 1, n) { while (A[i][i] != 0) { ll c = mod - A[j][i] / A[i][i]; FOR_R(k, i, n) { A[j][k] = bt.modulo(A[j][k] + A[i][k] * c); } swap(A[i], A[j]), det = mod - det; } swap(A[i], A[j]), det = mod - det; } } FOR(i, n) det = bt.mul(det, A[i][i]); return det % mod; } template <typename mint> mint det(vvc<mint>& A) { const int n = len(A); vv(int, B, n, n); FOR(i, n) FOR(j, n) B[i][j] = A[i][j].val; return det_mod(B, mint::get_mod()); } #line 2 "mod/modint_common.hpp" struct has_mod_impl { template <class T> static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {}; template <typename mint> mint inv(int n) { static const int mod = mint::get_mod(); static vector<mint> dat = {0, 1}; assert(0 <= n); if (n >= mod) n %= mod; while (len(dat) <= n) { int k = len(dat); int q = (mod + k - 1) / k; dat.eb(dat[k * q - mod] * mint::raw(q)); } return dat[n]; } template <typename mint> mint fact(int n) { static const int mod = mint::get_mod(); assert(0 <= n && n < mod); static vector<mint> dat = {1, 1}; while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat))); return dat[n]; } template <typename mint> mint fact_inv(int n) { static vector<mint> dat = {1, 1}; if (n < 0) return mint(0); while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat))); return dat[n]; } template <class mint, class... Ts> mint fact_invs(Ts... xs) { return (mint(1) * ... * fact_inv<mint>(xs)); } template <typename mint, class Head, class... Tail> mint multinomial(Head &&head, Tail &&... tail) { return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...); } template <typename mint> mint C_dense(int n, int k) { assert(n >= 0); if (k < 0 || n < k) return 0; static vvc<mint> C; static int H = 0, W = 0; auto calc = [&](int i, int j) -> mint { if (i == 0) return (j == 0 ? mint(1) : mint(0)); return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0); }; if (W <= k) { FOR(i, H) { C[i].resize(k + 1); FOR(j, W, k + 1) { C[i][j] = calc(i, j); } } W = k + 1; } if (H <= n) { C.resize(n + 1); FOR(i, H, n + 1) { C[i].resize(W); FOR(j, W) { C[i][j] = calc(i, j); } } H = n + 1; } return C[n][k]; } template <typename mint, bool large = false, bool dense = false> mint C(ll n, ll k) { assert(n >= 0); if (k < 0 || n < k) return 0; if constexpr (dense) return C_dense<mint>(n, k); if constexpr (!large) return multinomial<mint>(n, k, n - k); k = min(k, n - k); mint x(1); FOR(i, k) x *= mint(n - i); return x * fact_inv<mint>(k); } template <typename mint, bool large = false> mint C_inv(ll n, ll k) { assert(n >= 0); assert(0 <= k && k <= n); if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k); return mint(1) / C<mint, 1>(n, k); } // [x^d](1-x)^{-n} template <typename mint, bool large = false, bool dense = false> mint C_negative(ll n, ll d) { assert(n >= 0); if (d < 0) return mint(0); if (n == 0) { return (d == 0 ? mint(1) : mint(0)); } return C<mint, large, dense>(n + d - 1, d); } #line 3 "mod/modint.hpp" template <int mod> struct modint { static constexpr u32 umod = u32(mod); static_assert(umod < u32(1) << 31); u32 val; static modint raw(u32 v) { modint x; x.val = v; return x; } constexpr modint() : val(0) {} constexpr modint(u32 x) : val(x % umod) {} constexpr modint(u64 x) : val(x % umod) {} constexpr modint(u128 x) : val(x % umod) {} constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){}; bool operator<(const modint &other) const { return val < other.val; } modint &operator+=(const modint &p) { if ((val += p.val) >= umod) val -= umod; return *this; } modint &operator-=(const modint &p) { if ((val += umod - p.val) >= umod) val -= umod; return *this; } modint &operator*=(const modint &p) { val = u64(val) * p.val % umod; return *this; } modint &operator/=(const modint &p) { *this *= p.inverse(); return *this; } modint operator-() const { return modint::raw(val ? mod - val : u32(0)); } modint operator+(const modint &p) const { return modint(*this) += p; } modint operator-(const modint &p) const { return modint(*this) -= p; } modint operator*(const modint &p) const { return modint(*this) *= p; } modint operator/(const modint &p) const { return modint(*this) /= p; } bool operator==(const modint &p) const { return val == p.val; } bool operator!=(const modint &p) const { return val != p.val; } modint inverse() const { int a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return modint(u); } modint pow(ll n) const { assert(n >= 0); modint ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } static constexpr int get_mod() { return mod; } // (n, r), r は 1 の 2^n 乗根 static constexpr pair<int, int> ntt_info() { if (mod == 120586241) return {20, 74066978}; if (mod == 167772161) return {25, 17}; if (mod == 469762049) return {26, 30}; if (mod == 754974721) return {24, 362}; if (mod == 880803841) return {23, 211}; if (mod == 943718401) return {22, 663003469}; if (mod == 998244353) return {23, 31}; if (mod == 1004535809) return {21, 582313106}; if (mod == 1012924417) return {21, 368093570}; return {-1, -1}; } static constexpr bool can_ntt() { return ntt_info().fi != -1; } }; #ifdef FASTIO template <int mod> void rd(modint<mod> &x) { fastio::rd(x.val); x.val %= mod; // assert(0 <= x.val && x.val < mod); } template <int mod> void wt(modint<mod> x) { fastio::wt(x.val); } #endif using modint107 = modint<1000000007>; using modint998 = modint<998244353>; #line 3 "linalg/matrix_mul.hpp" template <class T, typename enable_if<has_mod<T>::value>::type* = nullptr> vc<vc<T>> matrix_mul(const vc<vc<T>>& A, const vc<vc<T>>& B, int N1 = -1, int N2 = -1, int N3 = -1) { if (N1 == -1) { N1 = len(A), N2 = len(B), N3 = len(B[0]); } vv(u32, b, N3, N2); FOR(i, N2) FOR(j, N3) b[j][i] = B[i][j].val; vv(T, C, N1, N3); if ((T::get_mod() < (1 << 30)) && N2 <= 16) { FOR(i, N1) FOR(j, N3) { u64 sm = 0; FOR(m, N2) sm += u64(A[i][m].val) * b[j][m]; C[i][j] = sm; } } else { FOR(i, N1) FOR(j, N3) { u128 sm = 0; FOR(m, N2) sm += u64(A[i][m].val) * b[j][m]; C[i][j] = T::raw(sm % (T::get_mod())); } } return C; } template <class T, typename enable_if<!has_mod<T>::value>::type* = nullptr> vc<vc<T>> matrix_mul(const vc<vc<T>>& A, const vc<vc<T>>& B, int N1 = -1, int N2 = -1, int N3 = -1) { if (N1 == -1) { N1 = len(A), N2 = len(B), N3 = len(B[0]); } vv(T, b, N2, N3); FOR(i, N2) FOR(j, N3) b[j][i] = B[i][j]; vv(T, C, N1, N3); FOR(n, N1) FOR(m, N2) FOR(k, N3) C[n][k] += A[n][m] * b[k][m]; return C; } // square-matrix defined as array template <class T, int N, typename enable_if<has_mod<T>::value>::type* = nullptr> array<array<T, N>, N> matrix_mul(const array<array<T, N>, N>& A, const array<array<T, N>, N>& B) { array<array<T, N>, N> C{}; if ((T::get_mod() < (1 << 30)) && N <= 16) { FOR(i, N) FOR(k, N) { u64 sm = 0; FOR(j, N) sm += u64(A[i][j].val) * (B[j][k].val); C[i][k] = sm; } } else { FOR(i, N) FOR(k, N) { u128 sm = 0; FOR(j, N) sm += u64(A[i][j].val) * (B[j][k].val); C[i][k] = sm; } } return C; } // square-matrix defined as array template <class T, int N, typename enable_if<!has_mod<T>::value>::type* = nullptr> array<array<T, N>, N> matrix_mul(const array<array<T, N>, N>& A, const array<array<T, N>, N>& B) { array<array<T, N>, N> C{}; FOR(i, N) FOR(j, N) FOR(k, N) C[i][k] += A[i][j] * B[j][k]; return C; } #line 5 "random/random_matrix.hpp" template <typename mint> vvc<mint> random_matrix(int n, int m, int rk) { if (n == m && m == rk) { while (1) { vv(mint, A, n, n); FOR(i, n) FOR(j, n) A[i][j] = RNG(0, mint::get_mod()); if (det(A) == mint(0)) continue; return A; } } vvc<mint> L = random_matrix<mint>(n, n, n); vvc<mint> R = random_matrix<mint>(m, m, m); vv(mint, A, n, m); FOR(i, rk) A[i][i] = 1; A = matrix_mul<mint>(L, A, n, n, m); A = matrix_mul<mint>(A, R, n, m, m); return A; } #line 2 "linalg/blackbox/solve_linear.hpp" // https://arxiv.org/pdf/1204.3735 template <typename mint, typename F1, typename F2> vc<mint> blackbox_solve_linear(int N, int M, F1 apply_A, F2 apply_AT, vc<mint> b) { assert(len(b) == N); vc<mint> D1(M), D2(N); FOR(i, M) D1[i] = RNG(0, mint::get_mod()); FOR(i, N) D2[i] = RNG(0, mint::get_mod()); auto apply_D1 = [&](vc<mint> &v) -> void { FOR(i, M) v[i] *= D1[i]; }; auto apply_D2 = [&](vc<mint> &v) -> void { FOR(i, N) v[i] *= D2[i]; }; auto apply_tilde_A = [&](vc<mint> v) -> vc<mint> { apply_D1(v); v = apply_A(v); apply_D2(v); v = apply_AT(v); apply_D1(v); return v; }; vc<mint> v(M); FOR(i, M) v[i] = RNG(0, mint::get_mod()); vc<mint> tilde_b = apply_tilde_A(v); vc<mint> c = b; apply_D2(c); c = apply_AT(c); apply_D1(c); FOR(i, M) tilde_b[i] += c[i]; auto dot = [&](vc<mint> &a, vc<mint> &b) -> mint { mint ans = 0; FOR(i, len(a)) ans += a[i] * b[i]; return ans; }; auto is_zero = [&](vc<mint> &a) -> bool { FOR(i, M) if (a[i] != mint(0)) return false; return true; }; auto solve_symmetric = [&](vc<mint> b) -> vc<mint> { if (is_zero(b)) return vc<mint>(M); vc<mint> w0(M), v0(M); mint t0 = 1; vc<mint> w1 = b, v1 = apply_tilde_A(b); mint t1 = dot(v1, w1); if (t1 == mint(0)) return {}; vc<mint> x(M); mint c = dot(b, w1) / t1; FOR(i, M) x[i] = c * w1[i]; while (1) { vc<mint> w2(M); mint c1 = dot(v1, v1) / t1, c0 = dot(v1, v0) / t0; FOR(i, M) w2[i] = v1[i] - c1 * w1[i] - c0 * w0[i]; if (is_zero(w2)) return x; vc<mint> v2 = apply_tilde_A(w2); mint t2 = dot(w2, v2); if (t2 == mint(0)) return {}; mint c = dot(b, w2) / t2; FOR(i, M) x[i] += c * w2[i]; swap(v0, v1), swap(v1, v2); swap(w0, w1), swap(w1, w2); swap(t0, t1), swap(t1, t2); } }; // tilde(A)x=tilde(b) vc<mint> x = solve_symmetric(tilde_b); if (x.empty()) return {}; FOR(i, M) x[i] -= v[i]; apply_D1(x); // check if (apply_A(x) != b) return {}; return x; } // Ax=b template <typename mint> vc<mint> sparse_solve_linear(int N, int M, vc<tuple<int, int, mint>> mat, vc<mint> b) { assert(len(b) == N); auto apply = [&](vc<mint> a) -> vc<mint> { assert(len(a) == M); vc<mint> b(N); for (auto &[i, j, x]: mat) b[i] += a[j] * x; return b; }; auto apply_T = [&](vc<mint> a) -> vc<mint> { assert(len(a) == N); vc<mint> b(M); for (auto &[i, j, x]: mat) b[j] += a[i] * x; return b; }; return blackbox_solve_linear<mint>(N, M, apply, apply_T, b); } #line 7 "test/1_mytest/blackbox_solve_linear.test.cpp" using mint = modint998; void test() { FOR(100) { FOR(N, 1, 10) FOR(M, 1, 10) FOR(R, 0, 10) { if (R > N || R > M) continue; vvc<mint> A = random_matrix<mint>(N, M, R); vc<tuple<int, int, mint>> mat; FOR(i, N) FOR(j, M) mat.eb(i, j, A[i][j]); vc<mint> x(N), y(M); FOR(i, M) y[i] = RNG(0, mint::get_mod()); FOR(i, N) FOR(j, M) x[i] += A[i][j] * y[j]; if (RNG(0, 2) == 0) { FOR(i, M) y[i] = RNG(0, 2); } int fail = 0; FOR(5) { vc<mint> ans = sparse_solve_linear<mint>(N, M, mat, x); if (ans.empty()) ++fail; } assert(fail <= 1); } } } void solve() { int a, b; cin >> a >> b; cout << a + b << "\n"; } signed main() { test(); solve(); return 0; }