This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb" #include "my_template.hpp" #include "graph/base.hpp" #include "graph/tree.hpp" #include "graph/tree_dp/rerooting_dp.hpp" #include "linalg/xor/vector_space.hpp" #include "linalg/xor/mat_inv.hpp" #include "linalg/xor/transpose.hpp" const int LOG = 64; vc<u64> solve_QOJ_5445(int N, vc<int> par, vvc<u64> dat) { using SP = Vector_Space<u64>; Graph<bool, 0> G(N); FOR(v, 1, N) { G.add(par[v - 1] - 1, v); } G.build(); Tree<decltype(G)> tree(G); vc<SP> dual(N); FOR(v, N) { SP x; for (auto&& e: dat[v]) x.add_element(e); dual[v] = x.orthogonal_space(LOG); } /* 木 dp の状態 ・深さ d のときに dual space に a が追加される (d,a) というイベントの列 ・高々 64 */ using P = pair<int, u64>; using Data = vc<P>; Data unit = {}; auto fee = [&](Data x, Data y) -> Data { // merge sort Data z; auto V = SP{}; auto add = [&](P& dat) -> void { if (len(V) == LOG) return; if (V.add_element(dat.se)) z.eb(dat.fi, V.dat.back()); }; int p = 0, q = 0; while (p < len(x) || q < len(y)) { if (len(V) == LOG) break; if (p == len(x)) { add(y[q++]); } elif (q == len(y)) { add(x[p++]); } else { if (x[p].fi < y[q].fi) { add(x[p++]); } else { add(y[q++]); } } } return z; }; auto fev = [&](Data x, int v) -> Data { Data y; for (auto&& a: dual[v].dat) y.eb(0, a); auto V = dual[v]; for (auto&& [d, a]: x) { if (len(V) == LOG) break; if (V.add_element(a)) y.eb(d, V.dat.back()); } return y; }; // e は v に入る有向辺 auto fve = [&](Data x, auto e) -> Data { for (auto&& [d, a]: x) ++d; return x; }; Rerooting_dp<decltype(tree), Data> dp(tree, fee, fev, fve, unit); vc<u64> ANS(N); FOR(v, N) { auto event = dp[v]; // full space にしておく vc<int> done(LOG); for (auto&& [d, a]: event) done[topbit(a)] = 1; FOR(i, LOG) if (!done[i]) event.eb(N, u64(1) << i); assert(len(event) == LOG); vc<u64> mat(LOG); FOR(i, LOG) mat[i] = event[i].se; mat = mat_inv<u64>(mat); mat = transpose<u64>(LOG, LOG, mat); FOR(j, LOG) { event[j].se = mat[j]; } event.insert(event.begin(), {0, u64(0)}); SP X{}; FOR_R(i, 1, 1 + LOG) { u64 x = event[i].se; X.add_element(x); int t1 = event[i - 1].fi, t2 = event[i].fi; if (t1 < t2) { u64 ans = X.get_max(0); ANS[v] += ans * u64(t2 - t1); } } } return ANS; } void test_QOJ_5445() { int N = 5; vc<int> par = {1, 2, 2, 3}; vvc<u64> dat(N); dat[0] = {83, 75, 58}; dat[1] = {125, 124, 58, 16}; dat[2] = {39, 125, 71, 112}; dat[3] = {69, 66, 5}; dat[4] = {48, 73, 69, 6}; auto ANS = solve_QOJ_5445(N, par, dat); assert(ANS == vc<u64>({171, 125, 183, 142, 243})); } void solve() { int a, b; cin >> a >> b; cout << a + b << "\n"; } signed main() { test_QOJ_5445(); solve(); return 0; }
#line 1 "test/1_mytest/QOJ5445.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/aplusb" #line 1 "my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else // https://codeforces.com/blog/entry/96344 #pragma GCC optimize("Ofast,unroll-loops") // いまの CF だとこれ入れると動かない? // #pragma GCC target("avx2,popcnt") #include <bits/stdc++.h> using namespace std; using ll = long long; using u8 = uint8_t; using u16 = uint16_t; using u32 = uint32_t; using u64 = uint64_t; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'010'000'000; template <> constexpr ll infty<ll> = 2'020'000'000'000'000'000; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); } int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); } int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); } int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T kth_bit(int k) { return T(1) << k; } template <typename T> bool has_kth_bit(T x, int k) { return x >> k & 1; } template <typename UINT> struct all_bit { struct iter { UINT s; iter(UINT s) : s(s) {} int operator*() const { return lowbit(s); } iter &operator++() { s &= s - 1; return *this; } bool operator!=(const iter) const { return s != 0; } }; UINT s; all_bit(UINT s) : s(s) {} iter begin() const { return iter(s); } iter end() const { return iter(0); } }; template <typename UINT> struct all_subset { static_assert(is_unsigned<UINT>::value); struct iter { UINT s, t; bool ed; iter(UINT s) : s(s), t(s), ed(0) {} int operator*() const { return s ^ t; } iter &operator++() { (t == 0 ? ed = 1 : t = (t - 1) & s); return *this; } bool operator!=(const iter) const { return !ed; } }; UINT s; all_subset(UINT s) : s(s) {} iter begin() const { return iter(s); } iter end() const { return iter(0); } }; template <typename T> T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); } template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); } template <typename T> pair<T, T> divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } template <typename T, typename... Vectors> void concat(vc<T> &first, const Vectors &... others) { vc<T> &res = first; (res.insert(res.end(), others.begin(), others.end()), ...); } #endif #line 3 "test/1_mytest/QOJ5445.test.cpp" #line 2 "ds/hashmap.hpp" // u64 -> Val template <typename Val> struct HashMap { // n は入れたいものの個数で ok HashMap(u32 n = 0) { build(n); } void build(u32 n) { u32 k = 8; while (k < n * 2) k *= 2; cap = k / 2, mask = k - 1; key.resize(k), val.resize(k), used.assign(k, 0); } // size を保ったまま. size=0 にするときは build すること. void clear() { used.assign(len(used), 0); cap = (mask + 1) / 2; } int size() { return len(used) / 2 - cap; } int index(const u64& k) { int i = 0; for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {} return i; } Val& operator[](const u64& k) { if (cap == 0) extend(); int i = index(k); if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; } return val[i]; } Val get(const u64& k, Val default_value) { int i = index(k); return (used[i] ? val[i] : default_value); } bool count(const u64& k) { int i = index(k); return used[i] && key[i] == k; } // f(key, val) template <typename F> void enumerate_all(F f) { FOR(i, len(used)) if (used[i]) f(key[i], val[i]); } private: u32 cap, mask; vc<u64> key; vc<Val> val; vc<bool> used; u64 hash(u64 x) { static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count(); x += FIXED_RANDOM; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return (x ^ (x >> 31)) & mask; } void extend() { vc<pair<u64, Val>> dat; dat.reserve(len(used) / 2 - cap); FOR(i, len(used)) { if (used[i]) dat.eb(key[i], val[i]); } build(2 * len(dat)); for (auto& [a, b]: dat) (*this)[a] = b; } }; #line 3 "graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { static constexpr bool is_directed = directed; int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void build(int n) { N = n, M = 0; prepared = 0; edges.clear(); indptr.clear(); csr_edges.clear(); vc_deg.clear(); vc_indeg.clear(); vc_outdeg.clear(); } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } #ifdef FASTIO // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } #endif void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } #ifdef FASTIO void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } #endif vc<int> new_idx; vc<bool> used_e; // G における頂点 V[i] が、新しいグラフで i になるようにする // {G, es} // sum(deg(v)) の計算量になっていて、 // 新しいグラフの n+m より大きい可能性があるので注意 Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) { if (len(new_idx) != N) new_idx.assign(N, -1); int n = len(V); FOR(i, n) new_idx[V[i]] = i; Graph<T, directed> G(n); vc<int> history; FOR(i, n) { for (auto&& e: (*this)[V[i]]) { if (len(used_e) <= e.id) used_e.resize(e.id + 1); if (used_e[e.id]) continue; int a = e.frm, b = e.to; if (new_idx[a] != -1 && new_idx[b] != -1) { history.eb(e.id); used_e[e.id] = 1; int eid = (keep_eid ? e.id : -1); G.add(new_idx[a], new_idx[b], e.cost, eid); } } } FOR(i, n) new_idx[V[i]] = -1; for (auto&& eid: history) used_e[eid] = 0; G.build(); return G; } Graph<T, true> to_directed_tree(int root = -1) { if (root == -1) root = 0; assert(!is_directed && prepared && M == N - 1); Graph<T, true> G1(N); vc<int> par(N, -1); auto dfs = [&](auto& dfs, int v) -> void { for (auto& e: (*this)[v]) { if (e.to == par[v]) continue; par[e.to] = v, dfs(dfs, e.to); } }; dfs(dfs, root); for (auto& e: edges) { int a = e.frm, b = e.to; if (par[a] == b) swap(a, b); assert(par[b] == a); G1.add(a, b, e.cost); } G1.build(); return G1; } HashMap<int> MP_FOR_EID; int get_eid(u64 a, u64 b) { if (len(MP_FOR_EID) == 0) { MP_FOR_EID.build(N - 1); for (auto& e: edges) { u64 a = e.frm, b = e.to; u64 k = to_eid_key(a, b); MP_FOR_EID[k] = e.id; } } return MP_FOR_EID.get(to_eid_key(a, b), -1); } u64 to_eid_key(u64 a, u64 b) { if (!directed && a > b) swap(a, b); return N * a + b; } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 2 "graph/tree.hpp" #line 4 "graph/tree.hpp" // HLD euler tour をとっていろいろ。 template <typename GT> struct Tree { using Graph_type = GT; GT &G; using WT = typename GT::cost_type; int N; vector<int> LID, RID, head, V, parent, VtoE; vc<int> depth; vc<WT> depth_weighted; Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); } void build(int r = 0, bool hld = 1) { if (r == -1) return; // build を遅延したいとき N = G.N; LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r); V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1); depth.assign(N, -1), depth_weighted.assign(N, 0); assert(G.is_prepared()); int t1 = 0; dfs_sz(r, -1, hld); dfs_hld(r, t1); } void dfs_sz(int v, int p, bool hld) { auto &sz = RID; parent[v] = p; depth[v] = (p == -1 ? 0 : depth[p] + 1); sz[v] = 1; int l = G.indptr[v], r = G.indptr[v + 1]; auto &csr = G.csr_edges; // 使う辺があれば先頭にする for (int i = r - 2; i >= l; --i) { if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]); } int hld_sz = 0; for (int i = l; i < r; ++i) { auto e = csr[i]; if (depth[e.to] != -1) continue; depth_weighted[e.to] = depth_weighted[v] + e.cost; VtoE[e.to] = e.id; dfs_sz(e.to, v, hld); sz[v] += sz[e.to]; if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); } } } void dfs_hld(int v, int ×) { LID[v] = times++; RID[v] += LID[v]; V[LID[v]] = v; bool heavy = true; for (auto &&e: G[v]) { if (depth[e.to] <= depth[v]) continue; head[e.to] = (heavy ? head[v] : e.to); heavy = false; dfs_hld(e.to, times); } } vc<int> heavy_path_at(int v) { vc<int> P = {v}; while (1) { int a = P.back(); for (auto &&e: G[a]) { if (e.to != parent[a] && head[e.to] == v) { P.eb(e.to); break; } } if (P.back() == a) break; } return P; } int heavy_child(int v) { int k = LID[v] + 1; if (k == N) return -1; int w = V[k]; return (parent[w] == v ? w : -1); } int e_to_v(int eid) { auto e = G.edges[eid]; return (parent[e.frm] == e.to ? e.frm : e.to); } int v_to_e(int v) { return VtoE[v]; } int get_eid(int u, int v) { if (parent[u] != v) swap(u, v); assert(parent[u] == v); return VtoE[u]; } int ELID(int v) { return 2 * LID[v] - depth[v]; } int ERID(int v) { return 2 * RID[v] - depth[v] - 1; } // 目標地点へ進む個数が k int LA(int v, int k) { assert(k <= depth[v]); while (1) { int u = head[v]; if (LID[v] - k >= LID[u]) return V[LID[v] - k]; k -= LID[v] - LID[u] + 1; v = parent[u]; } } int la(int u, int v) { return LA(u, v); } int LCA(int u, int v) { for (;; v = parent[head[v]]) { if (LID[u] > LID[v]) swap(u, v); if (head[u] == head[v]) return u; } } int meet(int a, int b, int c) { return LCA(a, b) ^ LCA(a, c) ^ LCA(b, c); } int lca(int u, int v) { return LCA(u, v); } int subtree_size(int v, int root = -1) { if (root == -1) return RID[v] - LID[v]; if (v == root) return N; int x = jump(v, root, 1); if (in_subtree(v, x)) return RID[v] - LID[v]; return N - RID[x] + LID[x]; } int dist(int a, int b) { int c = LCA(a, b); return depth[a] + depth[b] - 2 * depth[c]; } WT dist_weighted(int a, int b) { int c = LCA(a, b); return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c]; } // a is in b bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; } int jump(int a, int b, ll k) { if (k == 1) { if (a == b) return -1; return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]); } int c = LCA(a, b); int d_ac = depth[a] - depth[c]; int d_bc = depth[b] - depth[c]; if (k > d_ac + d_bc) return -1; if (k <= d_ac) return LA(a, k); return LA(b, d_ac + d_bc - k); } vc<int> collect_child(int v) { vc<int> res; for (auto &&e: G[v]) if (e.to != parent[v]) res.eb(e.to); return res; } vc<int> collect_light(int v) { vc<int> res; bool skip = true; for (auto &&e: G[v]) if (e.to != parent[v]) { if (!skip) res.eb(e.to); skip = false; } return res; } vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) { // [始点, 終点] の"閉"区間列。 vc<pair<int, int>> up, down; while (1) { if (head[u] == head[v]) break; if (LID[u] < LID[v]) { down.eb(LID[head[v]], LID[v]); v = parent[head[v]]; } else { up.eb(LID[u], LID[head[u]]); u = parent[head[u]]; } } if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]); elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge); reverse(all(down)); up.insert(up.end(), all(down)); return up; } // 辺の列の情報 (frm,to,str) // str = "heavy_up", "heavy_down", "light_up", "light_down" vc<tuple<int, int, string>> get_path_decomposition_detail(int u, int v) { vc<tuple<int, int, string>> up, down; while (1) { if (head[u] == head[v]) break; if (LID[u] < LID[v]) { if (v != head[v]) down.eb(head[v], v, "heavy_down"), v = head[v]; down.eb(parent[v], v, "light_down"), v = parent[v]; } else { if (u != head[u]) up.eb(u, head[u], "heavy_up"), u = head[u]; up.eb(u, parent[u], "light_up"), u = parent[u]; } } if (LID[u] < LID[v]) down.eb(u, v, "heavy_down"); elif (LID[v] < LID[u]) up.eb(u, v, "heavy_up"); reverse(all(down)); concat(up, down); return up; } vc<int> restore_path(int u, int v) { vc<int> P; for (auto &&[a, b]: get_path_decomposition(u, v, 0)) { if (a <= b) { FOR(i, a, b + 1) P.eb(V[i]); } else { FOR_R(i, b, a + 1) P.eb(V[i]); } } return P; } // path [a,b] と [c,d] の交わり. 空ならば {-1,-1}. // https://codeforces.com/problemset/problem/500/G pair<int, int> path_intersection(int a, int b, int c, int d) { int ab = lca(a, b), ac = lca(a, c), ad = lca(a, d); int bc = lca(b, c), bd = lca(b, d), cd = lca(c, d); int x = ab ^ ac ^ bc, y = ab ^ ad ^ bd; // meet(a,b,c), meet(a,b,d) if (x != y) return {x, y}; int z = ac ^ ad ^ cd; if (x != z) x = -1; return {x, x}; } // uv path 上で check(v) を満たす最後の v // なければ (つまり check(v) が ng )-1 template <class F> int max_path(F check, int u, int v) { if (!check(u)) return -1; auto pd = get_path_decomposition(u, v, false); for (auto [a, b]: pd) { if (!check(V[a])) return u; if (check(V[b])) { u = V[b]; continue; } int c = binary_search([&](int c) -> bool { return check(V[c]); }, a, b, 0); return V[c]; } return u; } }; #line 4 "graph/tree_dp/rerooting_dp.hpp" template <typename TREE, typename Data> struct Rerooting_dp { static_assert(!TREE::Graph_type::is_directed); TREE& tree; vc<Data> dp_1; // 辺 pv に対して、部分木 v vc<Data> dp_2; // 辺 pv に対して、部分木 p vc<Data> dp; // full tree template <typename F1, typename F2, typename F3> Rerooting_dp(TREE& tree, F1 f_ee, F2 f_ev, F3 f_ve, const Data unit) : tree(tree) { build(f_ee, f_ev, f_ve, unit); } // v を根としたときの full tree Data operator[](int v) { return dp[v]; } // root を根としたときの部分木 v Data get(int v, int root) { if (root == v) return dp[v]; if (!tree.in_subtree(root, v)) { return dp_1[v]; } int w = tree.jump(v, root, 1); return dp_2[w]; } template <typename F1, typename F2, typename F3> void build(F1 f_ee, F2 f_ev, F3 f_ve, const Data unit) { int N = tree.N; // dp1: subtree dp_1.assign(N, unit); FOR_R(i, N) { int v = tree.V[i]; for (auto&& e: tree.G[v]) { if (e.to == tree.parent[v]) continue; dp_1[v] = f_ee(dp_1[v], f_ve(dp_1[e.to], e)); } dp_1[v] = f_ev(dp_1[v], v); } // dp2[v]: subtree of p, rooted at v dp_2.assign(N, unit); // dp[v]: fulltree, rooted at v dp.assign(N, unit); FOR(i, N) { int p = tree.V[i]; vc<int> ch; vc<Data> ch_data; Data x = unit; for (auto&& e: tree.G[p]) { if (e.to == tree.parent[p]) { x = f_ve(dp_2[p], e); } else { ch.eb(e.to); ch_data.eb(f_ve(dp_1[e.to], e)); } } int n = len(ch); if (!n) { dp[p] = f_ev(x, p); continue; } vc<Data> prod_left(n, x); FOR(i, n - 1) prod_left[i + 1] = f_ee(prod_left[i], ch_data[i]); Data prod_right = unit; FOR_R(i, n) { dp_2[ch[i]] = f_ev(f_ee(prod_left[i], prod_right), p); prod_right = f_ee(prod_right, ch_data[i]); } dp[p] = f_ev(f_ee(x, prod_right), p); } } }; #line 7 "test/1_mytest/QOJ5445.test.cpp" #line 2 "linalg/xor/transpose.hpp" // n x m 行列の transpose。O((n+m)log(n+m)) 時間。 // https://github.com/dsnet/matrix-transpose template <typename UINT> vc<UINT> transpose(int n, int m, vc<UINT>& A, bool keep_A = 1) { assert(max(n, m) <= numeric_limits<UINT>::digits); assert(len(A) == n); vc<UINT> tmp; if (keep_A) tmp = A; int LOG = 0; while ((1 << LOG) < max(n, m)) ++LOG; A.resize(1 << LOG); int width = 1 << LOG; UINT mask = 1; FOR(i, LOG) mask = mask | (mask << (1 << i)); FOR(t, LOG) { width >>= 1; mask = mask ^ (mask >> width); FOR(i, 1 << t) { FOR(j, width) { UINT* x = &A[width * (2 * i + 0) + j]; UINT* y = &A[width * (2 * i + 1) + j]; *x = ((*y << width) & mask) ^ *x; *y = ((*x & mask) >> width) ^ *y; *x = ((*y << width) & mask) ^ *x; } } } A.resize(m); if (!keep_A) return A; swap(A, tmp); return tmp; } #line 2 "linalg/xor/vector_space.hpp" template <typename UINT> struct Vector_Space { #define SP Vector_Space vc<UINT> dat; Vector_Space() {} Vector_Space(vc<UINT> dat, bool is_reduced = false) : dat(dat) { if (!is_reduced) reduce(); } int size() { return dat.size(); } int dim() { return dat.size(); } bool add_element(UINT v) { for (auto&& e: dat) { if (e == 0 || v == 0) break; chmin(v, v ^ e); } if (v) { dat.eb(v); return true; } return false; } bool contain(UINT v) { for (auto&& w: dat) { if (v == 0) break; chmin(v, v ^ w); } return v == 0; } UINT get_max(UINT xor_val = 0) { UINT res = xor_val; for (auto&& x: dat) chmax(res, res ^ x); return res; } UINT get_min(UINT xor_val) { UINT res = xor_val; for (auto&& x: dat) chmin(res, res ^ x); return res; } static SP merge(SP x, SP y) { if (len(x) < len(y)) swap(x, y); for (auto v: y.dat) { x.add_element(v); } return x; } static SP intersection(SP& x, SP& y) { // とりあえず static_assert(is_same_v<UINT, u32>); vc<u64> xx; for (auto& v: x.dat) xx.eb(v | static_cast<u64>(v) << 32); Vector_Space<u64> z(xx, true); for (auto& v: y.dat) z.add_element(static_cast<u64>(v) << 32); vc<u32> xy; for (auto& v: z.dat) { if (v <= u32(-1)) xy.eb(v); } return SP(xy, true); } SP orthogonal_space(int max_dim) { normalize(); int m = max_dim; // pivot[k] == k となるように行の順番を変える vc<u64> tmp(m); FOR(i, len(dat)) tmp[topbit(dat[i])] = dat[i]; tmp = transpose(m, m, tmp, 0); SP res; FOR(j, m) { if (tmp[j] >> j & 1) continue; res.add_element(tmp[j] | UINT(1) << j); } return res; } void normalize(bool dec = true) { int n = len(dat); // 三角化 FOR(j, n) FOR(i, j) chmin(dat[i], dat[i] ^ dat[j]); sort(all(dat)); if (dec) reverse(all(dat)); } private: void reduce() { SP y; for (auto&& e: dat) y.add_element(e); (*this) = y; } #undef SP }; #line 1 "linalg/xor/mat_inv.hpp" // 行ベクトルを整数型で表現 template <typename UINT> vc<UINT> mat_inv(vc<UINT> A) { const int N = len(A); vc<UINT> B(N); FOR(i, N) B[i] = u64(1) << i; FOR(i, N) FOR(j, N) if (j != i) { if (chmin(A[i], A[i] ^ A[j])) B[i] ^= B[j]; } vc<UINT> res(N); FOR(i, N) res[topbit(A[i])] = B[i]; return res; } #line 11 "test/1_mytest/QOJ5445.test.cpp" const int LOG = 64; vc<u64> solve_QOJ_5445(int N, vc<int> par, vvc<u64> dat) { using SP = Vector_Space<u64>; Graph<bool, 0> G(N); FOR(v, 1, N) { G.add(par[v - 1] - 1, v); } G.build(); Tree<decltype(G)> tree(G); vc<SP> dual(N); FOR(v, N) { SP x; for (auto&& e: dat[v]) x.add_element(e); dual[v] = x.orthogonal_space(LOG); } /* 木 dp の状態 ・深さ d のときに dual space に a が追加される (d,a) というイベントの列 ・高々 64 */ using P = pair<int, u64>; using Data = vc<P>; Data unit = {}; auto fee = [&](Data x, Data y) -> Data { // merge sort Data z; auto V = SP{}; auto add = [&](P& dat) -> void { if (len(V) == LOG) return; if (V.add_element(dat.se)) z.eb(dat.fi, V.dat.back()); }; int p = 0, q = 0; while (p < len(x) || q < len(y)) { if (len(V) == LOG) break; if (p == len(x)) { add(y[q++]); } elif (q == len(y)) { add(x[p++]); } else { if (x[p].fi < y[q].fi) { add(x[p++]); } else { add(y[q++]); } } } return z; }; auto fev = [&](Data x, int v) -> Data { Data y; for (auto&& a: dual[v].dat) y.eb(0, a); auto V = dual[v]; for (auto&& [d, a]: x) { if (len(V) == LOG) break; if (V.add_element(a)) y.eb(d, V.dat.back()); } return y; }; // e は v に入る有向辺 auto fve = [&](Data x, auto e) -> Data { for (auto&& [d, a]: x) ++d; return x; }; Rerooting_dp<decltype(tree), Data> dp(tree, fee, fev, fve, unit); vc<u64> ANS(N); FOR(v, N) { auto event = dp[v]; // full space にしておく vc<int> done(LOG); for (auto&& [d, a]: event) done[topbit(a)] = 1; FOR(i, LOG) if (!done[i]) event.eb(N, u64(1) << i); assert(len(event) == LOG); vc<u64> mat(LOG); FOR(i, LOG) mat[i] = event[i].se; mat = mat_inv<u64>(mat); mat = transpose<u64>(LOG, LOG, mat); FOR(j, LOG) { event[j].se = mat[j]; } event.insert(event.begin(), {0, u64(0)}); SP X{}; FOR_R(i, 1, 1 + LOG) { u64 x = event[i].se; X.add_element(x); int t1 = event[i - 1].fi, t2 = event[i].fi; if (t1 < t2) { u64 ans = X.get_max(0); ANS[v] += ans * u64(t2 - t1); } } } return ANS; } void test_QOJ_5445() { int N = 5; vc<int> par = {1, 2, 2, 3}; vvc<u64> dat(N); dat[0] = {83, 75, 58}; dat[1] = {125, 124, 58, 16}; dat[2] = {39, 125, 71, 112}; dat[3] = {69, 66, 5}; dat[4] = {48, 73, 69, 6}; auto ANS = solve_QOJ_5445(N, par, dat); assert(ANS == vc<u64>({171, 125, 183, 142, 243})); } void solve() { int a, b; cin >> a >> b; cout << a + b << "\n"; } signed main() { test_QOJ_5445(); solve(); return 0; }