This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "string/suffix_automaton.hpp"
#include "graph/base.hpp" template <int sigma = 26> struct Suffix_Automaton { struct Node { array<int, sigma> next; // automaton の遷移先 int link; // suffix link int size; // node が受理する最長文字列の長さ Node(int link, int size) : link(link), size(size) { fill(all(next), -1); } }; vc<Node> nodes; int last; // 文字列全体を入れたときの行き先 Suffix_Automaton() { nodes.eb(Node(-1, 0)); last = 0; } void add(char c0, char off) { int c = c0 - off; int new_node = len(nodes); nodes.eb(Node(-1, nodes[last].size + 1)); int p = last; while (p != -1 && nodes[p].next[c] == -1) { nodes[p].next[c] = new_node; p = nodes[p].link; } int q = (p == -1 ? 0 : nodes[p].next[c]); if (p == -1 || nodes[p].size + 1 == nodes[q].size) { nodes[new_node].link = q; } else { int new_q = len(nodes); nodes.eb(Node(nodes[q].link, nodes[p].size + 1)); nodes.back().next = nodes[q].next; nodes[q].link = new_q; nodes[new_node].link = new_q; while (p != -1 && nodes[p].next[c] == q) { nodes[p].next[c] = new_q; p = nodes[p].link; } } last = new_node; } Graph<int, 1> calc_DAG() { int n = len(nodes); Graph<int, 1> G(n); FOR(v, n) { for (auto&& to: nodes[v].next) if (to != -1) { G.add(v, to); } } G.build(); return G; } Graph<int, 1> calc_tree() { int n = len(nodes); Graph<int, 1> G(n); FOR(v, 1, n) { int p = nodes[v].link; G.add(p, v); } G.build(); return G; } int count_substring_at(int p) { // あるノードについて、最短と最長の文字列長が分かればよい。 // 最長は size が持っている // 最短は、suffix link 先の最長に 1 を加えたものである。 if (p == 0) return 0; return nodes[p].size - nodes[nodes[p].link].size; } ll count_substring() { ll ANS = 0; FOR(i, len(nodes)) ANS += count_substring_at(i); return ANS; } };
#line 2 "graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { static constexpr bool is_directed = directed; int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void build(int n) { N = n, M = 0; prepared = 0; edges.clear(); indptr.clear(); csr_edges.clear(); vc_deg.clear(); vc_indeg.clear(); vc_outdeg.clear(); } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } #ifdef FASTIO // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } #endif void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } #ifdef FASTIO void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } #endif vc<int> new_idx; vc<bool> used_e; // G における頂点 V[i] が、新しいグラフで i になるようにする // {G, es} // sum(deg(v)) の計算量になっていて、 // 新しいグラフの n+m より大きい可能性があるので注意 Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) { if (len(new_idx) != N) new_idx.assign(N, -1); int n = len(V); FOR(i, n) new_idx[V[i]] = i; Graph<T, directed> G(n); vc<int> history; FOR(i, n) { for (auto&& e: (*this)[V[i]]) { if (len(used_e) <= e.id) used_e.resize(e.id + 1); if (used_e[e.id]) continue; int a = e.frm, b = e.to; if (new_idx[a] != -1 && new_idx[b] != -1) { history.eb(e.id); used_e[e.id] = 1; int eid = (keep_eid ? e.id : -1); G.add(new_idx[a], new_idx[b], e.cost, eid); } } } FOR(i, n) new_idx[V[i]] = -1; for (auto&& eid: history) used_e[eid] = 0; G.build(); return G; } Graph<T, true> to_directed_tree(int root = -1) { if (root == -1) root = 0; assert(!is_directed && prepared && M == N - 1); Graph<T, true> G1(N); vc<int> par(N, -1); auto dfs = [&](auto& dfs, int v) -> void { for (auto& e: (*this)[v]) { if (e.to == par[v]) continue; par[e.to] = v, dfs(dfs, e.to); } }; dfs(dfs, root); for (auto& e: edges) { int a = e.frm, b = e.to; if (par[a] == b) swap(a, b); assert(par[b] == a); G1.add(a, b, e.cost); } G1.build(); return G1; } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 2 "string/suffix_automaton.hpp" template <int sigma = 26> struct Suffix_Automaton { struct Node { array<int, sigma> next; // automaton の遷移先 int link; // suffix link int size; // node が受理する最長文字列の長さ Node(int link, int size) : link(link), size(size) { fill(all(next), -1); } }; vc<Node> nodes; int last; // 文字列全体を入れたときの行き先 Suffix_Automaton() { nodes.eb(Node(-1, 0)); last = 0; } void add(char c0, char off) { int c = c0 - off; int new_node = len(nodes); nodes.eb(Node(-1, nodes[last].size + 1)); int p = last; while (p != -1 && nodes[p].next[c] == -1) { nodes[p].next[c] = new_node; p = nodes[p].link; } int q = (p == -1 ? 0 : nodes[p].next[c]); if (p == -1 || nodes[p].size + 1 == nodes[q].size) { nodes[new_node].link = q; } else { int new_q = len(nodes); nodes.eb(Node(nodes[q].link, nodes[p].size + 1)); nodes.back().next = nodes[q].next; nodes[q].link = new_q; nodes[new_node].link = new_q; while (p != -1 && nodes[p].next[c] == q) { nodes[p].next[c] = new_q; p = nodes[p].link; } } last = new_node; } Graph<int, 1> calc_DAG() { int n = len(nodes); Graph<int, 1> G(n); FOR(v, n) { for (auto&& to: nodes[v].next) if (to != -1) { G.add(v, to); } } G.build(); return G; } Graph<int, 1> calc_tree() { int n = len(nodes); Graph<int, 1> G(n); FOR(v, 1, n) { int p = nodes[v].link; G.add(p, v); } G.build(); return G; } int count_substring_at(int p) { // あるノードについて、最短と最長の文字列長が分かればよい。 // 最長は size が持っている // 最短は、suffix link 先の最長に 1 を加えたものである。 if (p == 0) return 0; return nodes[p].size - nodes[nodes[p].link].size; } ll count_substring() { ll ANS = 0; FOR(i, len(nodes)) ANS += count_substring_at(i); return ANS; } };