This documentation is automatically generated by online-judge-tools/verification-helper
#include "seq/sidon_sequence.hpp"
#include "mod/mod_sqrt.hpp"
#include "nt/primetest.hpp"
#include "mod/primitive_root.hpp"
// a[i]+a[j] が distinct になるように a[i] を作る
// [0,p(p-1)) に p-1 個という簡単な方法がある.
struct Sidon_Sequence {
u32 N, p, r;
// positive にした
vc<u32> exp, log;
vc<u64> A;
Sidon_Sequence(u32 N) : N(N) {
p = max<ll>(3, N + 1);
while (!primetest(p)) ++p;
exp.resize(p - 1);
log.resize(p);
u32 r = primitive_root(p);
exp[0] = 1;
FOR(i, p - 2) exp[i + 1] = exp[i] * u64(r) % p;
FOR(i, p - 1) log[exp[i]] = i;
A.resize(N);
for (u32 i = 0; i < N; ++i) {
u64 a = i;
u64 b = exp[i];
u64 t = (a < b ? a - b + p - 1 : a - b);
A[i] = (b + t * p) % (u64(p) * (p - 1));
}
}
u64 operator[](int i) { return A[i]; }
pair<int, int> query(u64 val) {
u64 prod = exp[val % (p - 1)];
u64 sm = val % p;
u64 sq = (sm * sm + 4 * (p - prod)) % p;
if (log[sq] & 1) return {-1, -1};
assert(log[sq] % 2 == 0);
u64 k = log[sq] / 2;
u32 x = sm + exp[k], y = sm + p - exp[k];
x += (x & 1) * p, y += (y & 1) * p;
x = x / 2 % p, y = y / 2 % p;
x = log[x], y = log[y];
if (x < N && y < N && A[x] + A[y] == val) return {x, y};
return {-1, -1};
}
};
#line 2 "random/base.hpp"
u64 RNG_64() {
static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "mod/mod_pow.hpp"
#line 2 "mod/mongomery_modint.hpp"
// odd mod.
// x の代わりに rx を持つ
template <int id, typename U1, typename U2>
struct Mongomery_modint {
using mint = Mongomery_modint;
inline static U1 m, r, n2;
static constexpr int W = numeric_limits<U1>::digits;
static void set_mod(U1 mod) {
assert(mod & 1 && mod <= U1(1) << (W - 2));
m = mod, n2 = -U2(m) % m, r = m;
FOR(5) r *= 2 - m * r;
r = -r;
assert(r * m == U1(-1));
}
static U1 reduce(U2 b) { return (b + U2(U1(b) * r) * m) >> W; }
U1 x;
Mongomery_modint() : x(0) {}
Mongomery_modint(U1 x) : x(reduce(U2(x) * n2)){};
U1 val() const {
U1 y = reduce(x);
return y >= m ? y - m : y;
}
mint &operator+=(mint y) {
x = ((x += y.x) >= m ? x - m : x);
return *this;
}
mint &operator-=(mint y) {
x -= (x >= y.x ? y.x : y.x - m);
return *this;
}
mint &operator*=(mint y) {
x = reduce(U2(x) * y.x);
return *this;
}
mint operator+(mint y) const { return mint(*this) += y; }
mint operator-(mint y) const { return mint(*this) -= y; }
mint operator*(mint y) const { return mint(*this) *= y; }
bool operator==(mint y) const {
return (x >= m ? x - m : x) == (y.x >= m ? y.x - m : y.x);
}
bool operator!=(mint y) const { return not operator==(y); }
mint pow(ll n) const {
assert(n >= 0);
mint y = 1, z = *this;
for (; n; n >>= 1, z *= z)
if (n & 1) y *= z;
return y;
}
};
template <int id>
using Mongomery_modint_32 = Mongomery_modint<id, u32, u64>;
template <int id>
using Mongomery_modint_64 = Mongomery_modint<id, u64, u128>;
#line 2 "mod/barrett.hpp"
// https://github.com/atcoder/ac-library/blob/master/atcoder/internal_math.hpp
struct Barrett {
u32 m;
u64 im;
explicit Barrett(u32 m = 1) : m(m), im(u64(-1) / m + 1) {}
u32 umod() const { return m; }
u32 modulo(u64 z) {
if (m == 1) return 0;
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
return (z - y + (z < y ? m : 0));
}
u64 floor(u64 z) {
if (m == 1) return z;
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
return (z < y ? x - 1 : x);
}
pair<u64, u32> divmod(u64 z) {
if (m == 1) return {z, 0};
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
if (z < y) return {x - 1, z - y + m};
return {x, z - y};
}
u32 mul(u32 a, u32 b) { return modulo(u64(a) * b); }
};
struct Barrett_64 {
u128 mod, mh, ml;
explicit Barrett_64(u64 mod = 1) : mod(mod) {
u128 m = u128(-1) / mod;
if (m * mod + mod == u128(0)) ++m;
mh = m >> 64;
ml = m & u64(-1);
}
u64 umod() const { return mod; }
u64 modulo(u128 x) {
u128 z = (x & u64(-1)) * ml;
z = (x & u64(-1)) * mh + (x >> 64) * ml + (z >> 64);
z = (x >> 64) * mh + (z >> 64);
x -= z * mod;
return x < mod ? x : x - mod;
}
u64 mul(u64 a, u64 b) { return modulo(u128(a) * b); }
};
#line 5 "mod/mod_pow.hpp"
u32 mod_pow(int a, ll n, int mod) {
assert(n >= 0);
if (mod == 1) return 0;
a = ((a %= mod) < 0 ? a + mod : a);
if ((mod & 1) && (mod < (1 << 30))) {
using mint = Mongomery_modint_32<202311021>;
mint::set_mod(mod);
return mint(a).pow(n).val();
}
Barrett bt(mod);
int r = 1;
while (n) {
if (n & 1) r = bt.mul(r, a);
a = bt.mul(a, a), n >>= 1;
}
return r;
}
u64 mod_pow_64(ll a, ll n, u64 mod) {
assert(n >= 0);
if (mod == 1) return 0;
a = ((a %= mod) < 0 ? a + mod : a);
if ((mod & 1) && (mod < (u64(1) << 62))) {
using mint = Mongomery_modint_64<202311021>;
mint::set_mod(mod);
return mint(a).pow(n).val();
}
Barrett_64 bt(mod);
ll r = 1;
while (n) {
if (n & 1) r = bt.mul(r, a);
a = bt.mul(a, a), n >>= 1;
}
return r;
}
#line 3 "mod/mod_sqrt.hpp"
// p は素数. 解なしは -1.
int mod_sqrt(int a, int p) {
if (p == 2) return a;
if (a == 0) return 0;
int k = (p - 1) / 2;
if (mod_pow(a, k, p) != 1) return -1;
auto find = [&]() -> pi {
while (1) {
ll b = RNG(2, p);
ll D = (b * b - a) % p;
if (D == 0) return {b, D};
if (mod_pow(D, k, p) != 1) return {b, D};
}
};
auto [b, D] = find();
if (D == 0) return b;
++k;
// (b + sqrt(D))^k
ll f0 = b, f1 = 1, g0 = 1, g1 = 0;
while (k) {
if (k & 1) {
tie(g0, g1) = mp(f0 * g0 + D * f1 % p * g1, f1 * g0 + f0 * g1);
g0 %= p, g1 %= p;
}
tie(f0, f1) = mp(f0 * f0 + D * f1 % p * f1, 2 * f0 * f1);
f0 %= p, f1 %= p;
k >>= 1;
}
if (g0 < 0) g0 += p;
return g0;
}
// p は素数. 解なしは -1.
ll mod_sqrt_64(ll a, ll p) {
if (p == 2) return a;
if (a == 0) return 0;
ll k = (p - 1) / 2;
if (mod_pow_64(a, k, p) != 1) return -1;
auto find = [&]() -> pair<i128, i128> {
while (1) {
i128 b = RNG(2, p);
i128 D = b * b - a;
if (D == 0) return {b, D};
if (mod_pow_64(D, k, p) != 1) return {b, D};
}
};
auto [b, D] = find();
if (D == 0) return b;
++k;
// (b + sqrt(D))^k
i128 f0 = b, f1 = 1, g0 = 1, g1 = 0;
while (k) {
if (k & 1) {
tie(g0, g1) = mp(f0 * g0 + D * f1 % p * g1, f1 * g0 + f0 * g1);
g0 %= p, g1 %= p;
}
tie(f0, f1) = mp(f0 * f0 + D * f1 % p * f1, 2 * f0 * f1);
f0 %= p, f1 %= p;
k >>= 1;
}
return g0;
}
#line 3 "nt/primetest.hpp"
bool primetest(const u64 x) {
assert(x < u64(1) << 62);
if (x == 2 or x == 3 or x == 5 or x == 7) return true;
if (x % 2 == 0 or x % 3 == 0 or x % 5 == 0 or x % 7 == 0) return false;
if (x < 121) return x > 1;
const u64 d = (x - 1) >> lowbit(x - 1);
using mint = Mongomery_modint_64<202311020>;
mint::set_mod(x);
const mint one(u64(1)), minus_one(x - 1);
auto ok = [&](u64 a) -> bool {
auto y = mint(a).pow(d);
u64 t = d;
while (y != one && y != minus_one && t != x - 1) y *= y, t <<= 1;
if (y != minus_one && t % 2 == 0) return false;
return true;
};
if (x < (u64(1) << 32)) {
for (u64 a: {2, 7, 61})
if (!ok(a)) return false;
} else {
for (u64 a: {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) {
if (!ok(a)) return false;
}
}
return true;
}
#line 2 "mod/primitive_root.hpp"
#line 2 "nt/factor.hpp"
#line 5 "nt/factor.hpp"
template <typename mint>
ll rho(ll n, ll c) {
assert(n > 1);
const mint cc(c);
auto f = [&](mint x) { return x * x + cc; };
mint x = 1, y = 2, z = 1, q = 1;
ll g = 1;
const ll m = 1LL << (__lg(n) / 5);
for (ll r = 1; g == 1; r <<= 1) {
x = y;
FOR(r) y = f(y);
for (ll k = 0; k < r && g == 1; k += m) {
z = y;
FOR(min(m, r - k)) y = f(y), q *= x - y;
g = gcd(q.val(), n);
}
}
if (g == n) do {
z = f(z);
g = gcd((x - z).val(), n);
} while (g == 1);
return g;
}
ll find_prime_factor(ll n) {
assert(n > 1);
if (primetest(n)) return n;
FOR(100) {
ll m = 0;
if (n < (1 << 30)) {
using mint = Mongomery_modint_32<20231025>;
mint::set_mod(n);
m = rho<mint>(n, RNG(0, n));
} else {
using mint = Mongomery_modint_64<20231025>;
mint::set_mod(n);
m = rho<mint>(n, RNG(0, n));
}
if (primetest(m)) return m;
n = m;
}
assert(0);
return -1;
}
// ソートしてくれる
vc<pair<ll, int>> factor(ll n) {
assert(n >= 1);
vc<pair<ll, int>> pf;
FOR(p, 2, 100) {
if (p * p > n) break;
if (n % p == 0) {
ll e = 0;
do { n /= p, e += 1; } while (n % p == 0);
pf.eb(p, e);
}
}
while (n > 1) {
ll p = find_prime_factor(n);
ll e = 0;
do { n /= p, e += 1; } while (n % p == 0);
pf.eb(p, e);
}
sort(all(pf));
return pf;
}
vc<pair<ll, int>> factor_by_lpf(ll n, vc<int>& lpf) {
vc<pair<ll, int>> res;
while (n > 1) {
int p = lpf[n];
int e = 0;
while (n % p == 0) {
n /= p;
++e;
}
res.eb(p, e);
}
return res;
}
#line 6 "mod/primitive_root.hpp"
// int
int primitive_root(int p) {
auto pf = factor(p - 1);
auto is_ok = [&](int g) -> bool {
for (auto&& [q, e]: pf)
if (mod_pow(g, (p - 1) / q, p) == 1) return false;
return true;
};
while (1) {
int x = RNG(1, p);
if (is_ok(x)) return x;
}
return -1;
}
ll primitive_root_64(ll p) {
auto pf = factor(p - 1);
auto is_ok = [&](ll g) -> bool {
for (auto&& [q, e]: pf)
if (mod_pow_64(g, (p - 1) / q, p) == 1) return false;
return true;
};
while (1) {
ll x = RNG(1, p);
if (is_ok(x)) return x;
}
return -1;
}
// https://codeforces.com/contest/1190/problem/F
ll primitive_root_prime_power_64(ll p, ll e) {
assert(p >= 3);
ll g = primitive_root_64(p);
ll q = p;
ll phi = p - 1;
FOR(e - 1) {
q *= p;
phi *= p;
if (mod_pow_64(g, phi / p, q) == 1) g += q / p;
}
return g;
}
#line 4 "seq/sidon_sequence.hpp"
// a[i]+a[j] が distinct になるように a[i] を作る
// [0,p(p-1)) に p-1 個という簡単な方法がある.
struct Sidon_Sequence {
u32 N, p, r;
// positive にした
vc<u32> exp, log;
vc<u64> A;
Sidon_Sequence(u32 N) : N(N) {
p = max<ll>(3, N + 1);
while (!primetest(p)) ++p;
exp.resize(p - 1);
log.resize(p);
u32 r = primitive_root(p);
exp[0] = 1;
FOR(i, p - 2) exp[i + 1] = exp[i] * u64(r) % p;
FOR(i, p - 1) log[exp[i]] = i;
A.resize(N);
for (u32 i = 0; i < N; ++i) {
u64 a = i;
u64 b = exp[i];
u64 t = (a < b ? a - b + p - 1 : a - b);
A[i] = (b + t * p) % (u64(p) * (p - 1));
}
}
u64 operator[](int i) { return A[i]; }
pair<int, int> query(u64 val) {
u64 prod = exp[val % (p - 1)];
u64 sm = val % p;
u64 sq = (sm * sm + 4 * (p - prod)) % p;
if (log[sq] & 1) return {-1, -1};
assert(log[sq] % 2 == 0);
u64 k = log[sq] / 2;
u32 x = sm + exp[k], y = sm + p - exp[k];
x += (x & 1) * p, y += (y & 1) * p;
x = x / 2 % p, y = y / 2 % p;
x = log[x], y = log[y];
if (x < N && y < N && A[x] + A[y] == val) return {x, y};
return {-1, -1};
}
};