This documentation is automatically generated by online-judge-tools/verification-helper
#include "seq/domino_standard_tableaux.hpp"
#include "seq/hook_length_formula.hpp"
template <typename mint>
mint domino_standard_tableaux(vc<int> A) {
int N = len(A);
if (N == 0) return mint(1);
FOR(i, N - 1) assert(A[i] >= A[i + 1]);
int x = 0;
FOR(i, N) {
if (A[i] % 2 == 1) { x += (i % 2 == 0 ? 1 : -1); }
}
if (x != 0) return 0;
FOR(i, N) A[i] += N - 1 - i;
int ev = 0, od = 0;
vc<int> P, Q;
FOR_R(i, N) {
if (A[i] % 2 == 0) { P.eb(A[i] / 2 - ev), ++ev; }
if (A[i] % 2 == 1) { Q.eb(A[i] / 2 - od), ++od; }
}
reverse(all(P)), reverse(all(Q));
int b = SUM<int>(P), c = SUM<int>(Q);
return C<mint>(b + c, b) * hook_length_formula<mint>(P)
* hook_length_formula<mint>(Q);
}
#line 2 "seq/hook_length_formula.hpp"
template <typename mint>
mint hook_length_formula(vc<int> A) {
if (len(A) == 0) return 1;
int H = len(A), W = A[0];
FOR(i, H - 1) assert(A[i] >= A[i + 1]);
vc<int> B(W);
reverse(all(A));
mint ANS = fact<mint>(SUM<int>(A));
for (auto&& a: A) {
FOR(j, a) { ANS *= inv<mint>(B[j] + a - j), ++B[j]; }
}
return ANS;
}
#line 2 "seq/domino_standard_tableaux.hpp"
template <typename mint>
mint domino_standard_tableaux(vc<int> A) {
int N = len(A);
if (N == 0) return mint(1);
FOR(i, N - 1) assert(A[i] >= A[i + 1]);
int x = 0;
FOR(i, N) {
if (A[i] % 2 == 1) { x += (i % 2 == 0 ? 1 : -1); }
}
if (x != 0) return 0;
FOR(i, N) A[i] += N - 1 - i;
int ev = 0, od = 0;
vc<int> P, Q;
FOR_R(i, N) {
if (A[i] % 2 == 0) { P.eb(A[i] / 2 - ev), ++ev; }
if (A[i] % 2 == 1) { Q.eb(A[i] / 2 - od), ++od; }
}
reverse(all(P)), reverse(all(Q));
int b = SUM<int>(P), c = SUM<int>(Q);
return C<mint>(b + c, b) * hook_length_formula<mint>(P)
* hook_length_formula<mint>(Q);
}