This documentation is automatically generated by online-judge-tools/verification-helper
#include "seq/common_interval_decomposition.hpp"
#include "ds/segtree/lazy_segtree.hpp"
#include "alg/acted_monoid/min_add.hpp"
template <int NODES>
struct Common_Inverval_Decomposition {
struct Node {
vc<Node*> ch;
bool inc, dec;
int l, r, lo, hi;
};
Node* pool;
Node* root;
int pid;
Common_Inverval_Decomposition(vc<int>& P) : pid(0) {
pool = new Node[NODES];
build(P);
}
Node* new_node(bool inc, bool dec, int l, int r, int lo, int hi) {
pool[pid].inc = inc;
pool[pid].dec = dec;
pool[pid].l = l;
pool[pid].r = r;
pool[pid].lo = lo;
pool[pid].hi = hi;
return &(pool[pid++]);
}
void build(vc<int>& P) {
int N = len(P);
Lazy_SegTree<ActedMonoid_Min_Add<int>> seg(vc<int>(N, 0));
vc<Node*> st;
vc<int> mi = {-1}, ma = {-1};
FOR(i, N) {
while (mi.back() != -1 && P[i] < P[mi.back()]) {
int j = POP(mi);
seg.apply(mi.back() + 1, j + 1, P[j] - P[i]);
}
while (ma.back() != -1 && P[i] > P[ma.back()]) {
int j = POP(ma);
seg.apply(ma.back() + 1, j + 1, P[i] - P[j]);
}
mi.eb(i), ma.eb(i);
Node* now = new_node(0, 0, i, i + 1, P[i], P[i] + 1);
while (len(st)) {
Node* n = st.back();
if (n->hi == now->lo) {
if (n->inc) {
n->ch.eb(now);
n->r = now->r;
n->hi = now->hi;
now = n;
st.pop_back();
} else {
Node* p = new_node(1, 0, n->l, now->r, n->lo, now->hi);
p->ch.eb(n);
p->ch.eb(now);
now = p;
st.pop_back();
}
continue;
}
if (n->lo == now->hi) {
if (n->dec) {
n->ch.eb(now);
n->r = now->r;
n->lo = now->lo;
now = n;
st.pop_back();
} else {
Node* p = new_node(0, 1, n->l, now->r, now->lo, n->hi);
p->ch.eb(n);
p->ch.eb(now);
now = p;
st.pop_back();
}
continue;
}
// prime supernode creation
if (seg.prod(0, now->l) != 0) break;
Node* p = new_node(0, 0, now->l, now->r, now->lo, now->hi);
p->ch.eb(now);
now = p;
while (1) {
auto c = POP(st);
now->l = c->l;
chmin(now->lo, c->lo);
chmax(now->hi, c->hi);
now->ch.eb(c);
if (now->r - now->l == now->hi - now->lo) break;
}
reverse(all(now->ch));
}
st.eb(now);
seg.apply(0, i + 1, -1);
}
assert(len(st) == 1);
root = POP(st);
return;
}
void debug() {
auto dfs = [&](auto& dfs, Node* n) -> void {
print("l, r, lo, hi", n->l, n->r, n->lo, n->hi);
for (auto&& c: n->ch) dfs(dfs, c);
};
dfs(dfs, root);
};
};
#line 2 "ds/segtree/lazy_segtree.hpp"
template <typename ActedMonoid>
struct Lazy_SegTree {
using AM = ActedMonoid;
using MX = typename AM::Monoid_X;
using MA = typename AM::Monoid_A;
using X = typename MX::value_type;
using A = typename MA::value_type;
int n, log, size;
vc<X> dat;
vc<A> laz;
Lazy_SegTree() {}
Lazy_SegTree(int n) { build(n); }
template <typename F>
Lazy_SegTree(int n, F f) {
build(n, f);
}
Lazy_SegTree(const vc<X>& v) { build(v); }
void build(int m) {
build(m, [](int i) -> X { return MX::unit(); });
}
void build(const vc<X>& v) {
build(len(v), [&](int i) -> X { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m, log = 1;
while ((1 << log) < n) ++log;
size = 1 << log;
dat.assign(size << 1, MX::unit());
laz.assign(size, MA::unit());
FOR(i, n) dat[size + i] = f(i);
FOR_R(i, 1, size) update(i);
}
void update(int k) { dat[k] = MX::op(dat[2 * k], dat[2 * k + 1]); }
void set(int p, X x) {
assert(0 <= p && p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
dat[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
void multiply(int p, const X& x) {
assert(0 <= p && p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
dat[p] = MX::op(dat[p], x);
for (int i = 1; i <= log; i++) update(p >> i);
}
X get(int p) {
assert(0 <= p && p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return dat[p];
}
vc<X> get_all() {
FOR(k, 1, size) { push(k); }
return {dat.begin() + size, dat.begin() + size + n};
}
X prod(int l, int r) {
assert(0 <= l && l <= r && r <= n);
if (l == r) return MX::unit();
l += size, r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
X xl = MX::unit(), xr = MX::unit();
while (l < r) {
if (l & 1) xl = MX::op(xl, dat[l++]);
if (r & 1) xr = MX::op(dat[--r], xr);
l >>= 1, r >>= 1;
}
return MX::op(xl, xr);
}
X prod_all() { return dat[1]; }
void apply(int l, int r, A a) {
assert(0 <= l && l <= r && r <= n);
if (l == r) return;
l += size, r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) apply_at(l++, a);
if (r & 1) apply_at(--r, a);
l >>= 1, r >>= 1;
}
l = l2, r = r2;
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <typename F>
int max_right(const F check, int l) {
assert(0 <= l && l <= n);
assert(check(MX::unit()));
if (l == n) return n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
X sm = MX::unit();
do {
while (l % 2 == 0) l >>= 1;
if (!check(MX::op(sm, dat[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (check(MX::op(sm, dat[l]))) { sm = MX::op(sm, dat[l++]); }
}
return l - size;
}
sm = MX::op(sm, dat[l++]);
} while ((l & -l) != l);
return n;
}
template <typename F>
int min_left(const F check, int r) {
assert(0 <= r && r <= n);
assert(check(MX::unit()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
X sm = MX::unit();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!check(MX::op(dat[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (check(MX::op(dat[r], sm))) { sm = MX::op(dat[r--], sm); }
}
return r + 1 - size;
}
sm = MX::op(dat[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
void apply_at(int k, A a) {
ll sz = 1 << (log - topbit(k));
dat[k] = AM::act(dat[k], a, sz);
if (k < size) laz[k] = MA::op(laz[k], a);
}
void push(int k) {
if (laz[k] == MA::unit()) return;
apply_at(2 * k, laz[k]), apply_at(2 * k + 1, laz[k]);
laz[k] = MA::unit();
}
};
#line 2 "alg/monoid/add.hpp"
template <typename X>
struct Monoid_Add {
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
static constexpr X inverse(const X &x) noexcept { return -x; }
static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
static constexpr X unit() { return X(0); }
static constexpr bool commute = true;
};
#line 2 "alg/monoid/min.hpp"
template <typename E>
struct Monoid_Min {
using X = E;
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return min(x, y); }
static constexpr X unit() { return infty<E>; }
static constexpr bool commute = true;
};
#line 3 "alg/acted_monoid/min_add.hpp"
template <typename E>
struct ActedMonoid_Min_Add {
using Monoid_X = Monoid_Min<E>;
using Monoid_A = Monoid_Add<E>;
using X = typename Monoid_X::value_type;
using A = typename Monoid_A::value_type;
static constexpr X act(const X &x, const A &a, const ll &size) {
if (x == infty<E>) return x;
return x + a;
}
};
#line 3 "seq/common_interval_decomposition.hpp"
template <int NODES>
struct Common_Inverval_Decomposition {
struct Node {
vc<Node*> ch;
bool inc, dec;
int l, r, lo, hi;
};
Node* pool;
Node* root;
int pid;
Common_Inverval_Decomposition(vc<int>& P) : pid(0) {
pool = new Node[NODES];
build(P);
}
Node* new_node(bool inc, bool dec, int l, int r, int lo, int hi) {
pool[pid].inc = inc;
pool[pid].dec = dec;
pool[pid].l = l;
pool[pid].r = r;
pool[pid].lo = lo;
pool[pid].hi = hi;
return &(pool[pid++]);
}
void build(vc<int>& P) {
int N = len(P);
Lazy_SegTree<ActedMonoid_Min_Add<int>> seg(vc<int>(N, 0));
vc<Node*> st;
vc<int> mi = {-1}, ma = {-1};
FOR(i, N) {
while (mi.back() != -1 && P[i] < P[mi.back()]) {
int j = POP(mi);
seg.apply(mi.back() + 1, j + 1, P[j] - P[i]);
}
while (ma.back() != -1 && P[i] > P[ma.back()]) {
int j = POP(ma);
seg.apply(ma.back() + 1, j + 1, P[i] - P[j]);
}
mi.eb(i), ma.eb(i);
Node* now = new_node(0, 0, i, i + 1, P[i], P[i] + 1);
while (len(st)) {
Node* n = st.back();
if (n->hi == now->lo) {
if (n->inc) {
n->ch.eb(now);
n->r = now->r;
n->hi = now->hi;
now = n;
st.pop_back();
} else {
Node* p = new_node(1, 0, n->l, now->r, n->lo, now->hi);
p->ch.eb(n);
p->ch.eb(now);
now = p;
st.pop_back();
}
continue;
}
if (n->lo == now->hi) {
if (n->dec) {
n->ch.eb(now);
n->r = now->r;
n->lo = now->lo;
now = n;
st.pop_back();
} else {
Node* p = new_node(0, 1, n->l, now->r, now->lo, n->hi);
p->ch.eb(n);
p->ch.eb(now);
now = p;
st.pop_back();
}
continue;
}
// prime supernode creation
if (seg.prod(0, now->l) != 0) break;
Node* p = new_node(0, 0, now->l, now->r, now->lo, now->hi);
p->ch.eb(now);
now = p;
while (1) {
auto c = POP(st);
now->l = c->l;
chmin(now->lo, c->lo);
chmax(now->hi, c->hi);
now->ch.eb(c);
if (now->r - now->l == now->hi - now->lo) break;
}
reverse(all(now->ch));
}
st.eb(now);
seg.apply(0, i + 1, -1);
}
assert(len(st) == 1);
root = POP(st);
return;
}
void debug() {
auto dfs = [&](auto& dfs, Node* n) -> void {
print("l, r, lo, hi", n->l, n->r, n->lo, n->hi);
for (auto&& c: n->ch) dfs(dfs, c);
};
dfs(dfs, root);
};
};