This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "poly/prefix_product_of_poly.hpp"
#pragma once #include "linalg/matrix_mul.hpp" #include "poly/lagrange_interpolate_iota.hpp" // A[k-1]...A[0] を計算する // アルゴリズム参考:https://github.com/noshi91/n91lib_rs/blob/master/src/algorithm/polynomial_matrix_prod.rs // 実装参考:https://nyaannyaan.github.io/library/matrix/polynomial-matrix-prefix-prod.hpp template <typename T> vc<vc<T>> prefix_product_of_poly_matrix(vc<vc<vc<T>>>& A, ll k) { int n = len(A); using MAT = vc<vc<T>>; auto shift = [&](vc<MAT>& G, T x) -> vc<MAT> { int d = len(G); vvv(T, H, d, n, n); FOR(i, n) FOR(j, n) { vc<T> g(d); FOR(l, d) g[l] = G[l][i][j]; auto h = lagrange_interpolate_iota(g, x, d); FOR(l, d) H[l][i][j] = h[l]; } return H; }; auto evaluate = [&](vc<T>& f, T x) -> T { T res = 0; T p = 1; FOR(i, len(f)) { res += f[i] * p; p *= x; } return res; }; ll deg = 1; FOR(i, n) FOR(j, n) chmax(deg, len(A[i][j]) - 1); vc<MAT> G(deg + 1); ll v = 1; while (deg * v * v < k) v *= 2; T iv = T(1) / T(v); FOR(i, len(G)) { T x = T(v) * T(i); vv(T, mat, n, n); FOR(j, n) FOR(k, n) mat[j][k] = evaluate(A[j][k], x); G[i] = mat; } for (ll w = 1; w != v; w *= 2) { T W = w; auto G1 = shift(G, W * iv); auto G2 = shift(G, (W * T(deg) * T(v) + T(v)) * iv); auto G3 = shift(G, (W * T(deg) * T(v) + T(v) + W) * iv); FOR(i, w * deg + 1) { G[i] = matrix_mul(G1[i], G[i]); G2[i] = matrix_mul(G3[i], G2[i]); } copy(G2.begin(), G2.end() - 1, back_inserter(G)); } vv(T, res, n, n); FOR(i, n) res[i][i] = 1; ll i = 0; while (i + v <= k) res = matrix_mul(G[i / v], res), i += v; while (i < k) { vv(T, mat, n, n); FOR(j, n) FOR(k, n) mat[j][k] = evaluate(A[j][k], i); res = matrix_mul(mat, res); ++i; } return res; } // f[k-1]...f[0] を計算する template <typename T> T prefix_product_of_poly(vc<T>& f, ll k) { vc<vc<vc<T>>> A(1); A[0].resize(1); A[0][0] = f; auto res = prefix_product_of_poly_matrix(A, k); return res[0][0]; }
#line 2 "mod/modint_common.hpp" struct has_mod_impl { template <class T> static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {}; template <typename mint> mint inv(int n) { static const int mod = mint::get_mod(); static vector<mint> dat = {0, 1}; assert(0 <= n); if (n >= mod) n %= mod; while (len(dat) <= n) { int k = len(dat); int q = (mod + k - 1) / k; dat.eb(dat[k * q - mod] * mint::raw(q)); } return dat[n]; } template <typename mint> mint fact(int n) { static const int mod = mint::get_mod(); assert(0 <= n && n < mod); static vector<mint> dat = {1, 1}; while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat))); return dat[n]; } template <typename mint> mint fact_inv(int n) { static vector<mint> dat = {1, 1}; if (n < 0) return mint(0); while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat))); return dat[n]; } template <class mint, class... Ts> mint fact_invs(Ts... xs) { return (mint(1) * ... * fact_inv<mint>(xs)); } template <typename mint, class Head, class... Tail> mint multinomial(Head &&head, Tail &&... tail) { return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...); } template <typename mint> mint C_dense(int n, int k) { assert(n >= 0); if (k < 0 || n < k) return 0; static vvc<mint> C; static int H = 0, W = 0; auto calc = [&](int i, int j) -> mint { if (i == 0) return (j == 0 ? mint(1) : mint(0)); return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0); }; if (W <= k) { FOR(i, H) { C[i].resize(k + 1); FOR(j, W, k + 1) { C[i][j] = calc(i, j); } } W = k + 1; } if (H <= n) { C.resize(n + 1); FOR(i, H, n + 1) { C[i].resize(W); FOR(j, W) { C[i][j] = calc(i, j); } } H = n + 1; } return C[n][k]; } template <typename mint, bool large = false, bool dense = false> mint C(ll n, ll k) { assert(n >= 0); if (k < 0 || n < k) return 0; if constexpr (dense) return C_dense<mint>(n, k); if constexpr (!large) return multinomial<mint>(n, k, n - k); k = min(k, n - k); mint x(1); FOR(i, k) x *= mint(n - i); return x * fact_inv<mint>(k); } template <typename mint, bool large = false> mint C_inv(ll n, ll k) { assert(n >= 0); assert(0 <= k && k <= n); if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k); return mint(1) / C<mint, 1>(n, k); } // [x^d](1-x)^{-n} template <typename mint, bool large = false, bool dense = false> mint C_negative(ll n, ll d) { assert(n >= 0); if (d < 0) return mint(0); if (n == 0) { return (d == 0 ? mint(1) : mint(0)); } return C<mint, large, dense>(n + d - 1, d); } #line 3 "mod/modint.hpp" template <int mod> struct modint { static constexpr u32 umod = u32(mod); static_assert(umod < u32(1) << 31); u32 val; static modint raw(u32 v) { modint x; x.val = v; return x; } constexpr modint() : val(0) {} constexpr modint(u32 x) : val(x % umod) {} constexpr modint(u64 x) : val(x % umod) {} constexpr modint(u128 x) : val(x % umod) {} constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){}; bool operator<(const modint &other) const { return val < other.val; } modint &operator+=(const modint &p) { if ((val += p.val) >= umod) val -= umod; return *this; } modint &operator-=(const modint &p) { if ((val += umod - p.val) >= umod) val -= umod; return *this; } modint &operator*=(const modint &p) { val = u64(val) * p.val % umod; return *this; } modint &operator/=(const modint &p) { *this *= p.inverse(); return *this; } modint operator-() const { return modint::raw(val ? mod - val : u32(0)); } modint operator+(const modint &p) const { return modint(*this) += p; } modint operator-(const modint &p) const { return modint(*this) -= p; } modint operator*(const modint &p) const { return modint(*this) *= p; } modint operator/(const modint &p) const { return modint(*this) /= p; } bool operator==(const modint &p) const { return val == p.val; } bool operator!=(const modint &p) const { return val != p.val; } modint inverse() const { int a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return modint(u); } modint pow(ll n) const { assert(n >= 0); modint ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } static constexpr int get_mod() { return mod; } // (n, r), r は 1 の 2^n 乗根 static constexpr pair<int, int> ntt_info() { if (mod == 120586241) return {20, 74066978}; if (mod == 167772161) return {25, 17}; if (mod == 469762049) return {26, 30}; if (mod == 754974721) return {24, 362}; if (mod == 880803841) return {23, 211}; if (mod == 943718401) return {22, 663003469}; if (mod == 998244353) return {23, 31}; if (mod == 1004535809) return {21, 582313106}; if (mod == 1012924417) return {21, 368093570}; return {-1, -1}; } static constexpr bool can_ntt() { return ntt_info().fi != -1; } }; #ifdef FASTIO template <int mod> void rd(modint<mod> &x) { fastio::rd(x.val); x.val %= mod; // assert(0 <= x.val && x.val < mod); } template <int mod> void wt(modint<mod> x) { fastio::wt(x.val); } #endif using modint107 = modint<1000000007>; using modint998 = modint<998244353>; #line 3 "linalg/matrix_mul.hpp" template <class T, typename enable_if<has_mod<T>::value>::type* = nullptr> vc<vc<T>> matrix_mul(const vc<vc<T>>& A, const vc<vc<T>>& B, int N1 = -1, int N2 = -1, int N3 = -1) { if (N1 == -1) { N1 = len(A), N2 = len(B), N3 = len(B[0]); } vv(u32, b, N3, N2); FOR(i, N2) FOR(j, N3) b[j][i] = B[i][j].val; vv(T, C, N1, N3); if ((T::get_mod() < (1 << 30)) && N2 <= 16) { FOR(i, N1) FOR(j, N3) { u64 sm = 0; FOR(m, N2) sm += u64(A[i][m].val) * b[j][m]; C[i][j] = sm; } } else { FOR(i, N1) FOR(j, N3) { u128 sm = 0; FOR(m, N2) sm += u64(A[i][m].val) * b[j][m]; C[i][j] = T::raw(sm % (T::get_mod())); } } return C; } template <class T, typename enable_if<!has_mod<T>::value>::type* = nullptr> vc<vc<T>> matrix_mul(const vc<vc<T>>& A, const vc<vc<T>>& B, int N1 = -1, int N2 = -1, int N3 = -1) { if (N1 == -1) { N1 = len(A), N2 = len(B), N3 = len(B[0]); } vv(T, b, N2, N3); FOR(i, N2) FOR(j, N3) b[j][i] = B[i][j]; vv(T, C, N1, N3); FOR(n, N1) FOR(m, N2) FOR(k, N3) C[n][k] += A[n][m] * b[k][m]; return C; } // square-matrix defined as array template <class T, int N, typename enable_if<has_mod<T>::value>::type* = nullptr> array<array<T, N>, N> matrix_mul(const array<array<T, N>, N>& A, const array<array<T, N>, N>& B) { array<array<T, N>, N> C{}; if ((T::get_mod() < (1 << 30)) && N <= 16) { FOR(i, N) FOR(k, N) { u64 sm = 0; FOR(j, N) sm += u64(A[i][j].val) * (B[j][k].val); C[i][k] = sm; } } else { FOR(i, N) FOR(k, N) { u128 sm = 0; FOR(j, N) sm += u64(A[i][j].val) * (B[j][k].val); C[i][k] = sm; } } return C; } // square-matrix defined as array template <class T, int N, typename enable_if<!has_mod<T>::value>::type* = nullptr> array<array<T, N>, N> matrix_mul(const array<array<T, N>, N>& A, const array<array<T, N>, N>& B) { array<array<T, N>, N> C{}; FOR(i, N) FOR(j, N) FOR(k, N) C[i][k] += A[i][j] * B[j][k]; return C; } #line 2 "alg/monoid/mul.hpp" template <class T> struct Monoid_Mul { using value_type = T; using X = T; static constexpr X op(const X &x, const X &y) noexcept { return x * y; } static constexpr X inverse(const X &x) noexcept { return X(1) / x; } static constexpr X unit() { return X(1); } static constexpr bool commute = true; }; #line 1 "ds/sliding_window_aggregation.hpp" template <class Monoid> struct Sliding_Window_Aggregation { using X = typename Monoid::value_type; using value_type = X; int sz = 0; vc<X> dat; vc<X> cum_l; X cum_r; Sliding_Window_Aggregation() : cum_l({Monoid::unit()}), cum_r(Monoid::unit()) {} int size() { return sz; } void push(X x) { ++sz; cum_r = Monoid::op(cum_r, x); dat.eb(x); } void pop() { --sz; cum_l.pop_back(); if (len(cum_l) == 0) { cum_l = {Monoid::unit()}; cum_r = Monoid::unit(); while (len(dat) > 1) { cum_l.eb(Monoid::op(dat.back(), cum_l.back())); dat.pop_back(); } dat.pop_back(); } } X lprod() { return cum_l.back(); } X rprod() { return cum_r; } X prod() { return Monoid::op(cum_l.back(), cum_r); } }; // 定数倍は目に見えて遅くなるので、queue でよいときは使わない template <class Monoid> struct SWAG_deque { using X = typename Monoid::value_type; using value_type = X; int sz; vc<X> dat_l, dat_r; vc<X> cum_l, cum_r; SWAG_deque() : sz(0), cum_l({Monoid::unit()}), cum_r({Monoid::unit()}) {} int size() { return sz; } void push_back(X x) { ++sz; dat_r.eb(x); cum_r.eb(Monoid::op(cum_r.back(), x)); } void push_front(X x) { ++sz; dat_l.eb(x); cum_l.eb(Monoid::op(x, cum_l.back())); } void push(X x) { push_back(x); } void clear() { sz = 0; dat_l.clear(), dat_r.clear(); cum_l = {Monoid::unit()}, cum_r = {Monoid::unit()}; } void pop_front() { if (sz == 1) return clear(); if (dat_l.empty()) rebuild(); --sz; dat_l.pop_back(); cum_l.pop_back(); } void pop_back() { if (sz == 1) return clear(); if (dat_r.empty()) rebuild(); --sz; dat_r.pop_back(); cum_r.pop_back(); } void pop() { pop_front(); } X front() { if (len(dat_l)) return dat_l.back(); return dat_r[0]; } X lprod() { return cum_l.back(); } X rprod() { return cum_r.back(); } X prod() { return Monoid::op(cum_l.back(), cum_r.back()); } X prod_all() { return prod(); } private: void rebuild() { vc<X> X; reverse(all(dat_l)); concat(X, dat_l, dat_r); clear(); int m = len(X) / 2; FOR_R(i, m) push_front(X[i]); FOR(i, m, len(X)) push_back(X[i]); assert(sz == len(X)); } }; #line 2 "mod/mod_inv.hpp" // long でも大丈夫 // (val * x - 1) が mod の倍数になるようにする // 特に mod=0 なら x=0 が満たす ll mod_inv(ll val, ll mod) { if (mod == 0) return 0; mod = abs(mod); val %= mod; if (val < 0) val += mod; ll a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } if (u < 0) u += mod; return u; } #line 2 "mod/crt3.hpp" constexpr u32 mod_pow_constexpr(u64 a, u64 n, u32 mod) { a %= mod; u64 res = 1; FOR(32) { if (n & 1) res = res * a % mod; a = a * a % mod, n /= 2; } return res; } template <typename T, u32 p0, u32 p1> T CRT2(u64 a0, u64 a1) { static_assert(p0 < p1); static constexpr u64 x0_1 = mod_pow_constexpr(p0, p1 - 2, p1); u64 c = (a1 - a0 + p1) * x0_1 % p1; return a0 + c * p0; } template <typename T, u32 p0, u32 p1, u32 p2> T CRT3(u64 a0, u64 a1, u64 a2) { static_assert(p0 < p1 && p1 < p2); static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1); static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2); static constexpr u64 p01 = u64(p0) * p1; u64 c = (a1 - a0 + p1) * x1 % p1; u64 ans_1 = a0 + c * p0; c = (a2 - ans_1 % p2 + p2) * x2 % p2; return T(ans_1) + T(c) * T(p01); } template <typename T, u32 p0, u32 p1, u32 p2, u32 p3> T CRT4(u64 a0, u64 a1, u64 a2, u64 a3) { static_assert(p0 < p1 && p1 < p2 && p2 < p3); static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1); static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2); static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3); static constexpr u64 p01 = u64(p0) * p1; u64 c = (a1 - a0 + p1) * x1 % p1; u64 ans_1 = a0 + c * p0; c = (a2 - ans_1 % p2 + p2) * x2 % p2; u128 ans_2 = ans_1 + c * static_cast<u128>(p01); c = (a3 - ans_2 % p3 + p3) * x3 % p3; return T(ans_2) + T(c) * T(p01) * T(p2); } template <typename T, u32 p0, u32 p1, u32 p2, u32 p3, u32 p4> T CRT5(u64 a0, u64 a1, u64 a2, u64 a3, u64 a4) { static_assert(p0 < p1 && p1 < p2 && p2 < p3 && p3 < p4); static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1); static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2); static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3); static constexpr u64 x4 = mod_pow_constexpr(u64(p0) * p1 % p4 * p2 % p4 * p3 % p4, p4 - 2, p4); static constexpr u64 p01 = u64(p0) * p1; static constexpr u64 p23 = u64(p2) * p3; u64 c = (a1 - a0 + p1) * x1 % p1; u64 ans_1 = a0 + c * p0; c = (a2 - ans_1 % p2 + p2) * x2 % p2; u128 ans_2 = ans_1 + c * static_cast<u128>(p01); c = static_cast<u64>(a3 - ans_2 % p3 + p3) * x3 % p3; u128 ans_3 = ans_2 + static_cast<u128>(c * p2) * p01; c = static_cast<u64>(a4 - ans_3 % p4 + p4) * x4 % p4; return T(ans_3) + T(c) * T(p01) * T(p23); } #line 2 "poly/convolution_naive.hpp" template <class T, typename enable_if<!has_mod<T>::value>::type* = nullptr> vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) { int n = int(a.size()), m = int(b.size()); if (n > m) return convolution_naive<T>(b, a); if (n == 0) return {}; vector<T> ans(n + m - 1); FOR(i, n) FOR(j, m) ans[i + j] += a[i] * b[j]; return ans; } template <class T, typename enable_if<has_mod<T>::value>::type* = nullptr> vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) { int n = int(a.size()), m = int(b.size()); if (n > m) return convolution_naive<T>(b, a); if (n == 0) return {}; vc<T> ans(n + m - 1); if (n <= 16 && (T::get_mod() < (1 << 30))) { for (int k = 0; k < n + m - 1; ++k) { int s = max(0, k - m + 1); int t = min(n, k + 1); u64 sm = 0; for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); } ans[k] = sm; } } else { for (int k = 0; k < n + m - 1; ++k) { int s = max(0, k - m + 1); int t = min(n, k + 1); u128 sm = 0; for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); } ans[k] = T::raw(sm % T::get_mod()); } } return ans; } #line 2 "poly/convolution_karatsuba.hpp" // 任意の環でできる template <typename T> vc<T> convolution_karatsuba(const vc<T>& f, const vc<T>& g) { const int thresh = 30; if (min(len(f), len(g)) <= thresh) return convolution_naive(f, g); int n = max(len(f), len(g)); int m = ceil(n, 2); vc<T> f1, f2, g1, g2; if (len(f) < m) f1 = f; if (len(f) >= m) f1 = {f.begin(), f.begin() + m}; if (len(f) >= m) f2 = {f.begin() + m, f.end()}; if (len(g) < m) g1 = g; if (len(g) >= m) g1 = {g.begin(), g.begin() + m}; if (len(g) >= m) g2 = {g.begin() + m, g.end()}; vc<T> a = convolution_karatsuba(f1, g1); vc<T> b = convolution_karatsuba(f2, g2); FOR(i, len(f2)) f1[i] += f2[i]; FOR(i, len(g2)) g1[i] += g2[i]; vc<T> c = convolution_karatsuba(f1, g1); vc<T> F(len(f) + len(g) - 1); assert(2 * m + len(b) <= len(F)); FOR(i, len(a)) F[i] += a[i], c[i] -= a[i]; FOR(i, len(b)) F[2 * m + i] += b[i], c[i] -= b[i]; if (c.back() == T(0)) c.pop_back(); FOR(i, len(c)) if (c[i] != T(0)) F[m + i] += c[i]; return F; } #line 2 "poly/ntt.hpp" template <class mint> void ntt(vector<mint>& a, bool inverse) { assert(mint::can_ntt()); const int rank2 = mint::ntt_info().fi; const int mod = mint::get_mod(); static array<mint, 30> root, iroot; static array<mint, 30> rate2, irate2; static array<mint, 30> rate3, irate3; assert(rank2 != -1 && len(a) <= (1 << max(0, rank2))); static bool prepared = 0; if (!prepared) { prepared = 1; root[rank2] = mint::ntt_info().se; iroot[rank2] = mint(1) / root[rank2]; FOR_R(i, rank2) { root[i] = root[i + 1] * root[i + 1]; iroot[i] = iroot[i + 1] * iroot[i + 1]; } mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 2; i++) { rate2[i] = root[i + 2] * prod; irate2[i] = iroot[i + 2] * iprod; prod *= iroot[i + 2]; iprod *= root[i + 2]; } prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 3; i++) { rate3[i] = root[i + 3] * prod; irate3[i] = iroot[i + 3] * iprod; prod *= iroot[i + 3]; iprod *= root[i + 3]; } } int n = int(a.size()); int h = topbit(n); assert(n == 1 << h); if (!inverse) { int len = 0; while (len < h) { if (h - len == 1) { int p = 1 << (h - len - 1); mint rot = 1; FOR(s, 1 << len) { int offset = s << (h - len); FOR(i, p) { auto l = a[i + offset]; auto r = a[i + offset + p] * rot; a[i + offset] = l + r; a[i + offset + p] = l - r; } rot *= rate2[topbit(~s & -~s)]; } len++; } else { int p = 1 << (h - len - 2); mint rot = 1, imag = root[2]; for (int s = 0; s < (1 << len); s++) { mint rot2 = rot * rot; mint rot3 = rot2 * rot; int offset = s << (h - len); for (int i = 0; i < p; i++) { u64 mod2 = u64(mod) * mod; u64 a0 = a[i + offset].val; u64 a1 = u64(a[i + offset + p].val) * rot.val; u64 a2 = u64(a[i + offset + 2 * p].val) * rot2.val; u64 a3 = u64(a[i + offset + 3 * p].val) * rot3.val; u64 a1na3imag = (a1 + mod2 - a3) % mod * imag.val; u64 na2 = mod2 - a2; a[i + offset] = a0 + a2 + a1 + a3; a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i + offset + 2 * p] = a0 + na2 + a1na3imag; a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag); } rot *= rate3[topbit(~s & -~s)]; } len += 2; } } } else { mint coef = mint(1) / mint(len(a)); FOR(i, len(a)) a[i] *= coef; int len = h; while (len) { if (len == 1) { int p = 1 << (h - len); mint irot = 1; FOR(s, 1 << (len - 1)) { int offset = s << (h - len + 1); FOR(i, p) { u64 l = a[i + offset].val; u64 r = a[i + offset + p].val; a[i + offset] = l + r; a[i + offset + p] = (mod + l - r) * irot.val; } irot *= irate2[topbit(~s & -~s)]; } len--; } else { int p = 1 << (h - len); mint irot = 1, iimag = iroot[2]; FOR(s, (1 << (len - 2))) { mint irot2 = irot * irot; mint irot3 = irot2 * irot; int offset = s << (h - len + 2); for (int i = 0; i < p; i++) { u64 a0 = a[i + offset + 0 * p].val; u64 a1 = a[i + offset + 1 * p].val; u64 a2 = a[i + offset + 2 * p].val; u64 a3 = a[i + offset + 3 * p].val; u64 x = (mod + a2 - a3) * iimag.val % mod; a[i + offset] = a0 + a1 + a2 + a3; a[i + offset + 1 * p] = (a0 + mod - a1 + x) * irot.val; a[i + offset + 2 * p] = (a0 + a1 + 2 * mod - a2 - a3) * irot2.val; a[i + offset + 3 * p] = (a0 + 2 * mod - a1 - x) * irot3.val; } irot *= irate3[topbit(~s & -~s)]; } len -= 2; } } } } #line 8 "poly/convolution.hpp" template <class mint> vector<mint> convolution_ntt(vector<mint> a, vector<mint> b) { if (a.empty() || b.empty()) return {}; int n = int(a.size()), m = int(b.size()); int sz = 1; while (sz < n + m - 1) sz *= 2; // sz = 2^k のときの高速化。分割統治的なやつで損しまくるので。 if ((n + m - 3) <= sz / 2) { auto a_last = a.back(), b_last = b.back(); a.pop_back(), b.pop_back(); auto c = convolution(a, b); c.resize(n + m - 1); c[n + m - 2] = a_last * b_last; FOR(i, len(a)) c[i + len(b)] += a[i] * b_last; FOR(i, len(b)) c[i + len(a)] += b[i] * a_last; return c; } a.resize(sz), b.resize(sz); bool same = a == b; ntt(a, 0); if (same) { b = a; } else { ntt(b, 0); } FOR(i, sz) a[i] *= b[i]; ntt(a, 1); a.resize(n + m - 1); return a; } template <typename mint> vector<mint> convolution_garner(const vector<mint>& a, const vector<mint>& b) { int n = len(a), m = len(b); if (!n || !m) return {}; static constexpr int p0 = 167772161; static constexpr int p1 = 469762049; static constexpr int p2 = 754974721; using mint0 = modint<p0>; using mint1 = modint<p1>; using mint2 = modint<p2>; vc<mint0> a0(n), b0(m); vc<mint1> a1(n), b1(m); vc<mint2> a2(n), b2(m); FOR(i, n) a0[i] = a[i].val, a1[i] = a[i].val, a2[i] = a[i].val; FOR(i, m) b0[i] = b[i].val, b1[i] = b[i].val, b2[i] = b[i].val; auto c0 = convolution_ntt<mint0>(a0, b0); auto c1 = convolution_ntt<mint1>(a1, b1); auto c2 = convolution_ntt<mint2>(a2, b2); vc<mint> c(len(c0)); FOR(i, n + m - 1) { c[i] = CRT3<mint, p0, p1, p2>(c0[i].val, c1[i].val, c2[i].val); } return c; } vector<ll> convolution(vector<ll> a, vector<ll> b) { int n = len(a), m = len(b); if (!n || !m) return {}; if (min(n, m) <= 2500) return convolution_naive(a, b); ll mi_a = MIN(a), mi_b = MIN(b); for (auto& x: a) x -= mi_a; for (auto& x: b) x -= mi_b; assert(MAX(a) * MAX(b) <= 1e18); auto Ac = cumsum<ll>(a), Bc = cumsum<ll>(b); vi res(n + m - 1); for (int k = 0; k < n + m - 1; ++k) { int s = max(0, k - m + 1); int t = min(n, k + 1); res[k] += (t - s) * mi_a * mi_b; res[k] += mi_a * (Bc[k - s + 1] - Bc[k - t + 1]); res[k] += mi_b * (Ac[t] - Ac[s]); } static constexpr u32 MOD1 = 1004535809; static constexpr u32 MOD2 = 1012924417; using mint1 = modint<MOD1>; using mint2 = modint<MOD2>; vc<mint1> a1(n), b1(m); vc<mint2> a2(n), b2(m); FOR(i, n) a1[i] = a[i], a2[i] = a[i]; FOR(i, m) b1[i] = b[i], b2[i] = b[i]; auto c1 = convolution_ntt<mint1>(a1, b1); auto c2 = convolution_ntt<mint2>(a2, b2); FOR(i, n + m - 1) { res[i] += CRT2<u64, MOD1, MOD2>(c1[i].val, c2[i].val); } return res; } template <typename mint> vc<mint> convolution(const vc<mint>& a, const vc<mint>& b) { int n = len(a), m = len(b); if (!n || !m) return {}; if (mint::can_ntt()) { if (min(n, m) <= 50) return convolution_karatsuba<mint>(a, b); return convolution_ntt(a, b); } if (min(n, m) <= 200) return convolution_karatsuba<mint>(a, b); return convolution_garner(a, b); } #line 5 "poly/lagrange_interpolate_iota.hpp" // Input: f(0), ..., f(n-1) and c. Return: f(c) template <typename T, typename enable_if<has_mod<T>::value>::type * = nullptr> T lagrange_interpolate_iota(vc<T> &f, T c) { int n = len(f); if (int(c.val) < n) return f[c.val]; auto a = f; FOR(i, n) { a[i] = a[i] * fact_inv<T>(i) * fact_inv<T>(n - 1 - i); if ((n - 1 - i) & 1) a[i] = -a[i]; } vc<T> lp(n + 1), rp(n + 1); lp[0] = rp[n] = 1; FOR(i, n) lp[i + 1] = lp[i] * (c - i); FOR_R(i, n) rp[i] = rp[i + 1] * (c - i); T ANS = 0; FOR(i, n) ANS += a[i] * lp[i] * rp[i + 1]; return ANS; } // mod じゃない場合。かなり低次の多項式を想定している。O(n^2) // Input: f(0), ..., f(n-1) and c. Return: f(c) template <typename T, typename enable_if<!has_mod<T>::value>::type * = nullptr> T lagrange_interpolate_iota(vc<T> &f, T c) { const int LIM = 10; int n = len(f); assert(n < LIM); // (-1)^{i-j} binom(i,j) static vvc<int> C; if (C.empty()) { C.assign(LIM, vc<int>(LIM)); C[0][0] = 1; FOR(n, 1, LIM) FOR(k, n + 1) { C[n][k] += C[n - 1][k]; if (k) C[n][k] += C[n - 1][k - 1]; } FOR(n, LIM) FOR(k, n + 1) if ((n + k) % 2) C[n][k] = -C[n][k]; } // f(x) = sum a_i binom(x,i) vc<T> a(n); FOR(i, n) FOR(j, i + 1) { a[i] += f[j] * C[i][j]; } T res = 0; T b = 1; FOR(i, n) { res += a[i] * b; b = b * (c - i) / (1 + i); } return res; } // Input: f(0), ..., f(n-1) and c, m // Return: f(c), f(c+1), ..., f(c+m-1) // Complexity: M(n, n + m) template <typename mint> vc<mint> lagrange_interpolate_iota(vc<mint> &f, mint c, int m) { if (m <= 60) { vc<mint> ANS(m); FOR(i, m) ANS[i] = lagrange_interpolate_iota(f, c + mint(i)); return ANS; } ll n = len(f); auto a = f; FOR(i, n) { a[i] = a[i] * fact_inv<mint>(i) * fact_inv<mint>(n - 1 - i); if ((n - 1 - i) & 1) a[i] = -a[i]; } // x = c, c+1, ... に対して a0/x + a1/(x-1) + ... を求めておく vc<mint> b(n + m - 1); FOR(i, n + m - 1) b[i] = mint(1) / (c + mint(i - n + 1)); a = convolution(a, b); Sliding_Window_Aggregation<Monoid_Mul<mint>> swag; vc<mint> ANS(m); ll L = 0, R = 0; FOR(i, m) { while (L < i) { swag.pop(), ++L; } while (R - L < n) { swag.push(c + mint((R++) - n + 1)); } auto coef = swag.prod(); if (coef == 0) { ANS[i] = f[(c + i).val]; } else { ANS[i] = a[i + n - 1] * coef; } } return ANS; } #line 4 "poly/prefix_product_of_poly.hpp" // A[k-1]...A[0] を計算する // アルゴリズム参考:https://github.com/noshi91/n91lib_rs/blob/master/src/algorithm/polynomial_matrix_prod.rs // 実装参考:https://nyaannyaan.github.io/library/matrix/polynomial-matrix-prefix-prod.hpp template <typename T> vc<vc<T>> prefix_product_of_poly_matrix(vc<vc<vc<T>>>& A, ll k) { int n = len(A); using MAT = vc<vc<T>>; auto shift = [&](vc<MAT>& G, T x) -> vc<MAT> { int d = len(G); vvv(T, H, d, n, n); FOR(i, n) FOR(j, n) { vc<T> g(d); FOR(l, d) g[l] = G[l][i][j]; auto h = lagrange_interpolate_iota(g, x, d); FOR(l, d) H[l][i][j] = h[l]; } return H; }; auto evaluate = [&](vc<T>& f, T x) -> T { T res = 0; T p = 1; FOR(i, len(f)) { res += f[i] * p; p *= x; } return res; }; ll deg = 1; FOR(i, n) FOR(j, n) chmax(deg, len(A[i][j]) - 1); vc<MAT> G(deg + 1); ll v = 1; while (deg * v * v < k) v *= 2; T iv = T(1) / T(v); FOR(i, len(G)) { T x = T(v) * T(i); vv(T, mat, n, n); FOR(j, n) FOR(k, n) mat[j][k] = evaluate(A[j][k], x); G[i] = mat; } for (ll w = 1; w != v; w *= 2) { T W = w; auto G1 = shift(G, W * iv); auto G2 = shift(G, (W * T(deg) * T(v) + T(v)) * iv); auto G3 = shift(G, (W * T(deg) * T(v) + T(v) + W) * iv); FOR(i, w * deg + 1) { G[i] = matrix_mul(G1[i], G[i]); G2[i] = matrix_mul(G3[i], G2[i]); } copy(G2.begin(), G2.end() - 1, back_inserter(G)); } vv(T, res, n, n); FOR(i, n) res[i][i] = 1; ll i = 0; while (i + v <= k) res = matrix_mul(G[i / v], res), i += v; while (i < k) { vv(T, mat, n, n); FOR(j, n) FOR(k, n) mat[j][k] = evaluate(A[j][k], i); res = matrix_mul(mat, res); ++i; } return res; } // f[k-1]...f[0] を計算する template <typename T> T prefix_product_of_poly(vc<T>& f, ll k) { vc<vc<vc<T>>> A(1); A[0].resize(1); A[0][0] = f; auto res = prefix_product_of_poly_matrix(A, k); return res[0][0]; }