library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub maspypy/library

:heavy_check_mark: other/dice.hpp

Depends on

Verified with

Code

#include "graph/base.hpp"

// 次の番号付けるに従う:UFRLBD
// i, 5-i が反対の面になっている
// https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ITP1_11_A
// https://atcoder.jp/contests/tenka1-2012-final/tasks/tenka1_2012_final_e
template <typename X>
struct Dice {
  using ARR = array<X, 6>;
  ARR A;

  Dice(ARR A) : A(A) {}

  X U() { return A[0]; }
  X F() { return A[1]; }
  X R() { return A[2]; }
  X L() { return A[3]; }
  X B() { return A[4]; }
  X D() { return A[5]; }

  // U のうつる先となる FRLB を指定する or 方角 NWES を指定する
  void rotate(char c) {
    if (c == 'F' || c == 'S') A = {A[4], A[0], A[2], A[3], A[5], A[1]};
    elif (c == 'R' || c == 'E') A = {A[3], A[1], A[0], A[5], A[4], A[2]};
    elif (c == 'L' || c == 'W') A = {A[2], A[1], A[5], A[0], A[4], A[3]};
    elif (c == 'B' || c == 'N') A = {A[1], A[5], A[2], A[3], A[0], A[4]};
    elif (c == 'U') A = {A[0], A[2], A[4], A[1], A[3], A[5]};
    elif (c == 'D') A = {A[0], A[3], A[1], A[4], A[2], A[5]};
    else {
      assert(false);
    }
  }

  vc<ARR> gen_all() {
    vc<ARR> res(24);
    vc<tuple<int, int, int>> tmp(24);
    tmp[0] = {0, 1, 2};
    tmp[1] = {0, 4, 3};
    tmp[2] = {5, 1, 3};
    tmp[3] = {5, 4, 2};

    FOR(i, 4) {
      auto [a, b, c] = tmp[i];
      tmp[4 + i] = {b, c, a};
      tmp[8 + i] = {c, a, b};
    }

    FOR(i, 12) {
      auto [a, b, c] = tmp[i];
      tmp[12 + i] = {5 - b, a, c};
    }

    FOR(i, 24) {
      auto [a, b, c] = tmp[i];
      res[i] = {A[a], A[b], A[c], A[5 - c], A[5 - b], A[5 - a]};
    }
    return res;
  }

  // 24 頂点 6 遷移のグラフを作る
  Graph<int, 0> to_graph() {
    int N = 24;
    Graph<int, 0> G(N);
    auto dat = gen_all();
    FOR(i, N) {
      array<X, 6> A = dat[i];
      for (char ch: {'U', 'F', 'R', 'L', 'B', 'D'}) {
        Dice<X> d(A);
        d.rotate(ch);
        int idx = -1;
        FOR(j, N) if (dat[j] == d.A) idx = j;
        assert(idx != -1);
        if (i < idx) G.add(i, idx);
      }
    }
    G.build();
    return G;
  }
};
#line 2 "graph/base.hpp"

template <typename T>
struct Edge {
  int frm, to;
  T cost;
  int id;
};

template <typename T = int, bool directed = false>
struct Graph {
  static constexpr bool is_directed = directed;
  int N, M;
  using cost_type = T;
  using edge_type = Edge<T>;
  vector<edge_type> edges;
  vector<int> indptr;
  vector<edge_type> csr_edges;
  vc<int> vc_deg, vc_indeg, vc_outdeg;
  bool prepared;

  class OutgoingEdges {
  public:
    OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}

    const edge_type* begin() const {
      if (l == r) { return 0; }
      return &G->csr_edges[l];
    }

    const edge_type* end() const {
      if (l == r) { return 0; }
      return &G->csr_edges[r];
    }

  private:
    const Graph* G;
    int l, r;
  };

  bool is_prepared() { return prepared; }

  Graph() : N(0), M(0), prepared(0) {}
  Graph(int N) : N(N), M(0), prepared(0) {}

  void build(int n) {
    N = n, M = 0;
    prepared = 0;
    edges.clear();
    indptr.clear();
    csr_edges.clear();
    vc_deg.clear();
    vc_indeg.clear();
    vc_outdeg.clear();
  }

  void add(int frm, int to, T cost = 1, int i = -1) {
    assert(!prepared);
    assert(0 <= frm && 0 <= to && to < N);
    if (i == -1) i = M;
    auto e = edge_type({frm, to, cost, i});
    edges.eb(e);
    ++M;
  }

#ifdef FASTIO
  // wt, off
  void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }

  void read_graph(int M, bool wt = false, int off = 1) {
    for (int m = 0; m < M; ++m) {
      INT(a, b);
      a -= off, b -= off;
      if (!wt) {
        add(a, b);
      } else {
        T c;
        read(c);
        add(a, b, c);
      }
    }
    build();
  }
#endif

  void build() {
    assert(!prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (auto&& e: edges) {
      indptr[e.frm + 1]++;
      if (!directed) indptr[e.to + 1]++;
    }
    for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
    auto counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (auto&& e: edges) {
      csr_edges[counter[e.frm]++] = e;
      if (!directed)
        csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
    }
  }

  OutgoingEdges operator[](int v) const {
    assert(prepared);
    return {this, indptr[v], indptr[v + 1]};
  }

  vc<int> deg_array() {
    if (vc_deg.empty()) calc_deg();
    return vc_deg;
  }

  pair<vc<int>, vc<int>> deg_array_inout() {
    if (vc_indeg.empty()) calc_deg_inout();
    return {vc_indeg, vc_outdeg};
  }

  int deg(int v) {
    if (vc_deg.empty()) calc_deg();
    return vc_deg[v];
  }

  int in_deg(int v) {
    if (vc_indeg.empty()) calc_deg_inout();
    return vc_indeg[v];
  }

  int out_deg(int v) {
    if (vc_outdeg.empty()) calc_deg_inout();
    return vc_outdeg[v];
  }

#ifdef FASTIO
  void debug() {
    print("Graph");
    if (!prepared) {
      print("frm to cost id");
      for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
    } else {
      print("indptr", indptr);
      print("frm to cost id");
      FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
    }
  }
#endif

  vc<int> new_idx;
  vc<bool> used_e;

  // G における頂点 V[i] が、新しいグラフで i になるようにする
  // {G, es}
  Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
    if (len(new_idx) != N) new_idx.assign(N, -1);
    int n = len(V);
    FOR(i, n) new_idx[V[i]] = i;
    Graph<T, directed> G(n);
    vc<int> history;
    FOR(i, n) {
      for (auto&& e: (*this)[V[i]]) {
        if (len(used_e) <= e.id) used_e.resize(e.id + 1);
        if (used_e[e.id]) continue;
        int a = e.frm, b = e.to;
        if (new_idx[a] != -1 && new_idx[b] != -1) {
          history.eb(e.id);
          used_e[e.id] = 1;
          int eid = (keep_eid ? e.id : -1);
          G.add(new_idx[a], new_idx[b], e.cost, eid);
        }
      }
    }
    FOR(i, n) new_idx[V[i]] = -1;
    for (auto&& eid: history) used_e[eid] = 0;
    G.build();
    return G;
  }

private:
  void calc_deg() {
    assert(vc_deg.empty());
    vc_deg.resize(N);
    for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
  }

  void calc_deg_inout() {
    assert(vc_indeg.empty());
    vc_indeg.resize(N);
    vc_outdeg.resize(N);
    for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
  }
};
#line 2 "other/dice.hpp"

// 次の番号付けるに従う:UFRLBD
// i, 5-i が反対の面になっている
// https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ITP1_11_A
// https://atcoder.jp/contests/tenka1-2012-final/tasks/tenka1_2012_final_e
template <typename X>
struct Dice {
  using ARR = array<X, 6>;
  ARR A;

  Dice(ARR A) : A(A) {}

  X U() { return A[0]; }
  X F() { return A[1]; }
  X R() { return A[2]; }
  X L() { return A[3]; }
  X B() { return A[4]; }
  X D() { return A[5]; }

  // U のうつる先となる FRLB を指定する or 方角 NWES を指定する
  void rotate(char c) {
    if (c == 'F' || c == 'S') A = {A[4], A[0], A[2], A[3], A[5], A[1]};
    elif (c == 'R' || c == 'E') A = {A[3], A[1], A[0], A[5], A[4], A[2]};
    elif (c == 'L' || c == 'W') A = {A[2], A[1], A[5], A[0], A[4], A[3]};
    elif (c == 'B' || c == 'N') A = {A[1], A[5], A[2], A[3], A[0], A[4]};
    elif (c == 'U') A = {A[0], A[2], A[4], A[1], A[3], A[5]};
    elif (c == 'D') A = {A[0], A[3], A[1], A[4], A[2], A[5]};
    else {
      assert(false);
    }
  }

  vc<ARR> gen_all() {
    vc<ARR> res(24);
    vc<tuple<int, int, int>> tmp(24);
    tmp[0] = {0, 1, 2};
    tmp[1] = {0, 4, 3};
    tmp[2] = {5, 1, 3};
    tmp[3] = {5, 4, 2};

    FOR(i, 4) {
      auto [a, b, c] = tmp[i];
      tmp[4 + i] = {b, c, a};
      tmp[8 + i] = {c, a, b};
    }

    FOR(i, 12) {
      auto [a, b, c] = tmp[i];
      tmp[12 + i] = {5 - b, a, c};
    }

    FOR(i, 24) {
      auto [a, b, c] = tmp[i];
      res[i] = {A[a], A[b], A[c], A[5 - c], A[5 - b], A[5 - a]};
    }
    return res;
  }

  // 24 頂点 6 遷移のグラフを作る
  Graph<int, 0> to_graph() {
    int N = 24;
    Graph<int, 0> G(N);
    auto dat = gen_all();
    FOR(i, N) {
      array<X, 6> A = dat[i];
      for (char ch: {'U', 'F', 'R', 'L', 'B', 'D'}) {
        Dice<X> d(A);
        d.rotate(ch);
        int idx = -1;
        FOR(j, N) if (dat[j] == d.A) idx = j;
        assert(idx != -1);
        if (i < idx) G.add(i, idx);
      }
    }
    G.build();
    return G;
  }
};
Back to top page