This documentation is automatically generated by online-judge-tools/verification-helper
#include "nt/crt.hpp"
#include "mod/mod_inv.hpp"
#include "nt/coprime_factorization.hpp"
#include "nt/factor.hpp"
#include "mod/barrett.hpp"
// 非負最小解を mod new_mod で返す (garner), なければ -1.
template <typename T>
i128 CRT(vc<T> vals, vc<T> mods, ll new_mod = -1, bool coprime = false) {
int n = len(vals);
FOR(i, n) { vals[i] = ((vals[i] %= mods[i]) >= 0 ? vals[i] : vals[i] + mods[i]); }
bool ng = 0;
auto reduction_by_factor = [&]() -> void {
unordered_map<T, pair<T, T>> MP;
FOR(i, n) {
for (auto&& [p, e]: factor(mods[i])) {
T mod = 1;
FOR(e) mod *= p;
T val = vals[i] % mod;
if (!MP.count(p)) {
MP[p] = {mod, val % mod};
continue;
}
auto& [mod1, val1] = MP[p];
if (mod > mod1) swap(mod, mod1), swap(val, val1);
if (val1 % mod != val) {
ng = 1;
return;
}
}
}
mods.clear(), vals.clear();
for (auto&& [p, x]: MP) {
auto [mod, val] = x;
mods.eb(mod), vals.eb(val);
}
n = len(vals);
};
auto reduction_by_coprime_factor = [&]() -> void {
auto [basis, pfs] = coprime_factorization<T>(mods);
int k = len(basis);
vc<pair<T, T>> dat(k, {1, 0});
FOR(i, n) {
for (auto&& [pid, exp]: pfs[i]) {
T mod = 1;
FOR(exp) mod *= basis[pid];
T val = vals[i] % mod;
auto& [mod1, val1] = dat[pid];
if (mod > mod1) swap(mod, mod1), swap(val, val1);
if (val1 % mod != val) {
ng = 1;
return;
}
}
}
mods.clear(), vals.clear();
for (auto&& [mod, val]: dat) { mods.eb(mod), vals.eb(val); }
n = len(vals);
};
if (!coprime) { (n <= 10 ? reduction_by_coprime_factor() : reduction_by_factor()); }
if (ng) return -1;
if (n == 0) return 0;
vc<ll> cfs(n);
if (MAX(mods) < (1LL << 31)) {
FOR(i, n) {
Barrett bt(mods[i]);
ll a = vals[i], prod = 1;
FOR(j, i) {
a = bt.modulo(a + cfs[j] * (mods[i] - prod));
prod = bt.mul(prod, mods[j]);
}
cfs[i] = bt.mul(mod_inv(prod, mods[i]), a);
}
} else {
FOR(i, n) {
ll a = vals[i], prod = 1;
FOR(j, i) {
a = (a + i128(cfs[j]) * (mods[i] - prod)) % mods[i];
prod = i128(prod) * mods[j] % mods[i];
}
cfs[i] = mod_inv(prod, mods[i]) * i128(a) % mods[i];
}
}
i128 ret = 0, prod = 1;
FOR(i, n) {
ret += prod * cfs[i], prod *= mods[i];
if (new_mod != -1) { ret %= new_mod, prod %= new_mod; }
}
return ret;
}
#line 2 "mod/mod_inv.hpp"
// long でも大丈夫
// (val * x - 1) が mod の倍数になるようにする
// 特に mod=0 なら x=0 が満たす
ll mod_inv(ll val, ll mod) {
if (mod == 0) return 0;
mod = abs(mod);
val %= mod;
if (val < 0) val += mod;
ll a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
if (u < 0) u += mod;
return u;
}
#line 1 "nt/coprime_factorization.hpp"
/*
互いに素な整数 p1, p2, ..., pk を用いて n_i = prod p_i^e_i と表す.
[21,60,140,400]
[3,7,20], [[(0,1),(1,1)],[(0,1),(2,1)],[(1,1),(2,1)],[(2,2)]]
*/
template <typename T>
pair<vc<T>, vvc<pair<int, int>>> coprime_factorization(vc<T> nums) {
vc<T> basis;
for (T val: nums) {
vc<T> new_basis;
for (T x: basis) {
if (val == 1) {
new_basis.eb(x);
continue;
}
vc<T> dat = {val, x};
FOR(p, 1, len(dat)) {
FOR(i, p) {
while (1) {
if (dat[p] > 1 && dat[i] % dat[p] == 0) dat[i] /= dat[p];
elif (dat[i] > 1 && dat[p] % dat[i] == 0) dat[p] /= dat[i];
else break;
}
T g = gcd(dat[i], dat[p]);
if (g == 1 || g == dat[i] || g == dat[p]) continue;
dat[i] /= g, dat[p] /= g, dat.eb(g);
}
}
val = dat[0];
FOR(i, 1, len(dat)) if (dat[i] != 1) new_basis.eb(dat[i]);
}
if (val > 1) new_basis.eb(val);
swap(basis, new_basis);
}
sort(all(basis));
vvc<pair<int, int>> res(len(nums));
FOR(i, len(nums)) {
T x = nums[i];
FOR(j, len(basis)) {
int e = 0;
while (x % basis[j] == 0) x /= basis[j], ++e;
if (e) res[i].eb(j, e);
}
}
return {basis, res};
}
#line 2 "nt/factor.hpp"
#line 2 "random/base.hpp"
u64 RNG_64() {
static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "mod/mongomery_modint.hpp"
// odd mod.
// x の代わりに rx を持つ
template <int id, typename U1, typename U2>
struct Mongomery_modint {
using mint = Mongomery_modint;
inline static U1 m, r, n2;
static constexpr int W = numeric_limits<U1>::digits;
static void set_mod(U1 mod) {
assert(mod & 1 && mod <= U1(1) << (W - 2));
m = mod, n2 = -U2(m) % m, r = m;
FOR(5) r *= 2 - m * r;
r = -r;
assert(r * m == U1(-1));
}
static U1 reduce(U2 b) { return (b + U2(U1(b) * r) * m) >> W; }
U1 x;
Mongomery_modint() : x(0) {}
Mongomery_modint(U1 x) : x(reduce(U2(x) * n2)){};
U1 val() const {
U1 y = reduce(x);
return y >= m ? y - m : y;
}
mint &operator+=(mint y) {
x = ((x += y.x) >= m ? x - m : x);
return *this;
}
mint &operator-=(mint y) {
x -= (x >= y.x ? y.x : y.x - m);
return *this;
}
mint &operator*=(mint y) {
x = reduce(U2(x) * y.x);
return *this;
}
mint operator+(mint y) const { return mint(*this) += y; }
mint operator-(mint y) const { return mint(*this) -= y; }
mint operator*(mint y) const { return mint(*this) *= y; }
bool operator==(mint y) const {
return (x >= m ? x - m : x) == (y.x >= m ? y.x - m : y.x);
}
bool operator!=(mint y) const { return not operator==(y); }
mint pow(ll n) const {
assert(n >= 0);
mint y = 1, z = *this;
for (; n; n >>= 1, z *= z)
if (n & 1) y *= z;
return y;
}
};
template <int id>
using Mongomery_modint_32 = Mongomery_modint<id, u32, u64>;
template <int id>
using Mongomery_modint_64 = Mongomery_modint<id, u64, u128>;
#line 3 "nt/primetest.hpp"
bool primetest(const u64 x) {
assert(x < u64(1) << 62);
if (x == 2 or x == 3 or x == 5 or x == 7) return true;
if (x % 2 == 0 or x % 3 == 0 or x % 5 == 0 or x % 7 == 0) return false;
if (x < 121) return x > 1;
const u64 d = (x - 1) >> lowbit(x - 1);
using mint = Mongomery_modint_64<202311020>;
mint::set_mod(x);
const mint one(u64(1)), minus_one(x - 1);
auto ok = [&](u64 a) -> bool {
auto y = mint(a).pow(d);
u64 t = d;
while (y != one && y != minus_one && t != x - 1) y *= y, t <<= 1;
if (y != minus_one && t % 2 == 0) return false;
return true;
};
if (x < (u64(1) << 32)) {
for (u64 a: {2, 7, 61})
if (!ok(a)) return false;
} else {
for (u64 a: {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) {
if (!ok(a)) return false;
}
}
return true;
}
#line 5 "nt/factor.hpp"
template <typename mint>
ll rho(ll n, ll c) {
assert(n > 1);
const mint cc(c);
auto f = [&](mint x) { return x * x + cc; };
mint x = 1, y = 2, z = 1, q = 1;
ll g = 1;
const ll m = 1LL << (__lg(n) / 5);
for (ll r = 1; g == 1; r <<= 1) {
x = y;
FOR(r) y = f(y);
for (ll k = 0; k < r && g == 1; k += m) {
z = y;
FOR(min(m, r - k)) y = f(y), q *= x - y;
g = gcd(q.val(), n);
}
}
if (g == n) do {
z = f(z);
g = gcd((x - z).val(), n);
} while (g == 1);
return g;
}
ll find_prime_factor(ll n) {
assert(n > 1);
if (primetest(n)) return n;
FOR(100) {
ll m = 0;
if (n < (1 << 30)) {
using mint = Mongomery_modint_32<20231025>;
mint::set_mod(n);
m = rho<mint>(n, RNG(0, n));
} else {
using mint = Mongomery_modint_64<20231025>;
mint::set_mod(n);
m = rho<mint>(n, RNG(0, n));
}
if (primetest(m)) return m;
n = m;
}
assert(0);
return -1;
}
// ソートしてくれる
vc<pair<ll, int>> factor(ll n) {
assert(n >= 1);
vc<pair<ll, int>> pf;
FOR(p, 2, 100) {
if (p * p > n) break;
if (n % p == 0) {
ll e = 0;
do { n /= p, e += 1; } while (n % p == 0);
pf.eb(p, e);
}
}
while (n > 1) {
ll p = find_prime_factor(n);
ll e = 0;
do { n /= p, e += 1; } while (n % p == 0);
pf.eb(p, e);
}
sort(all(pf));
return pf;
}
vc<pair<ll, int>> factor_by_lpf(ll n, vc<int>& lpf) {
vc<pair<ll, int>> res;
while (n > 1) {
int p = lpf[n];
int e = 0;
while (n % p == 0) {
n /= p;
++e;
}
res.eb(p, e);
}
return res;
}
#line 2 "mod/barrett.hpp"
// https://github.com/atcoder/ac-library/blob/master/atcoder/internal_math.hpp
struct Barrett {
u32 m;
u64 im;
explicit Barrett(u32 m = 1) : m(m), im(u64(-1) / m + 1) {}
u32 umod() const { return m; }
u32 modulo(u64 z) {
if (m == 1) return 0;
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
return (z - y + (z < y ? m : 0));
}
u64 floor(u64 z) {
if (m == 1) return z;
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
return (z < y ? x - 1 : x);
}
pair<u64, u32> divmod(u64 z) {
if (m == 1) return {z, 0};
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
if (z < y) return {x - 1, z - y + m};
return {x, z - y};
}
u32 mul(u32 a, u32 b) { return modulo(u64(a) * b); }
};
struct Barrett_64 {
u128 mod, mh, ml;
explicit Barrett_64(u64 mod = 1) : mod(mod) {
u128 m = u128(-1) / mod;
if (m * mod + mod == u128(0)) ++m;
mh = m >> 64;
ml = m & u64(-1);
}
u64 umod() const { return mod; }
u64 modulo(u128 x) {
u128 z = (x & u64(-1)) * ml;
z = (x & u64(-1)) * mh + (x >> 64) * ml + (z >> 64);
z = (x >> 64) * mh + (z >> 64);
x -= z * mod;
return x < mod ? x : x - mod;
}
u64 mul(u64 a, u64 b) { return modulo(u128(a) * b); }
};
#line 5 "nt/crt.hpp"
// 非負最小解を mod new_mod で返す (garner), なければ -1.
template <typename T>
i128 CRT(vc<T> vals, vc<T> mods, ll new_mod = -1, bool coprime = false) {
int n = len(vals);
FOR(i, n) { vals[i] = ((vals[i] %= mods[i]) >= 0 ? vals[i] : vals[i] + mods[i]); }
bool ng = 0;
auto reduction_by_factor = [&]() -> void {
unordered_map<T, pair<T, T>> MP;
FOR(i, n) {
for (auto&& [p, e]: factor(mods[i])) {
T mod = 1;
FOR(e) mod *= p;
T val = vals[i] % mod;
if (!MP.count(p)) {
MP[p] = {mod, val % mod};
continue;
}
auto& [mod1, val1] = MP[p];
if (mod > mod1) swap(mod, mod1), swap(val, val1);
if (val1 % mod != val) {
ng = 1;
return;
}
}
}
mods.clear(), vals.clear();
for (auto&& [p, x]: MP) {
auto [mod, val] = x;
mods.eb(mod), vals.eb(val);
}
n = len(vals);
};
auto reduction_by_coprime_factor = [&]() -> void {
auto [basis, pfs] = coprime_factorization<T>(mods);
int k = len(basis);
vc<pair<T, T>> dat(k, {1, 0});
FOR(i, n) {
for (auto&& [pid, exp]: pfs[i]) {
T mod = 1;
FOR(exp) mod *= basis[pid];
T val = vals[i] % mod;
auto& [mod1, val1] = dat[pid];
if (mod > mod1) swap(mod, mod1), swap(val, val1);
if (val1 % mod != val) {
ng = 1;
return;
}
}
}
mods.clear(), vals.clear();
for (auto&& [mod, val]: dat) { mods.eb(mod), vals.eb(val); }
n = len(vals);
};
if (!coprime) { (n <= 10 ? reduction_by_coprime_factor() : reduction_by_factor()); }
if (ng) return -1;
if (n == 0) return 0;
vc<ll> cfs(n);
if (MAX(mods) < (1LL << 31)) {
FOR(i, n) {
Barrett bt(mods[i]);
ll a = vals[i], prod = 1;
FOR(j, i) {
a = bt.modulo(a + cfs[j] * (mods[i] - prod));
prod = bt.mul(prod, mods[j]);
}
cfs[i] = bt.mul(mod_inv(prod, mods[i]), a);
}
} else {
FOR(i, n) {
ll a = vals[i], prod = 1;
FOR(j, i) {
a = (a + i128(cfs[j]) * (mods[i] - prod)) % mods[i];
prod = i128(prod) * mods[j] % mods[i];
}
cfs[i] = mod_inv(prod, mods[i]) * i128(a) % mods[i];
}
}
i128 ret = 0, prod = 1;
FOR(i, n) {
ret += prod * cfs[i], prod *= mods[i];
if (new_mod != -1) { ret %= new_mod, prod %= new_mod; }
}
return ret;
}