This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "nt/crt.hpp"
#include "mod/mod_inv.hpp" #include "nt/coprime_factorization.hpp" #include "nt/factor.hpp" #include "mod/barrett.hpp" // 非負最小解を mod new_mod で返す (garner), なければ -1. template <typename T> i128 CRT(vc<T> vals, vc<T> mods, ll new_mod = -1, bool coprime = false) { int n = len(vals); FOR(i, n) { vals[i] = ((vals[i] %= mods[i]) >= 0 ? vals[i] : vals[i] + mods[i]); } bool ng = 0; auto reduction_by_factor = [&]() -> void { unordered_map<T, pair<T, int>> MP; FOR(i, n) { for (auto&& [p, e]: factor(mods[i])) { T mod = 1; FOR(e) mod *= p; T val = vals[i] % mod; if (!MP.count(p)) { MP[p] = {mod, val % mod}; continue; } auto& [mod1, val1] = MP[p]; if (mod > mod1) swap(mod, mod1), swap(val, val1); if (val1 % mod != val) { ng = 1; return; } } } mods.clear(), vals.clear(); for (auto&& [p, x]: MP) { auto [mod, val] = x; mods.eb(mod), vals.eb(val); } n = len(vals); }; auto reduction_by_coprime_factor = [&]() -> void { auto [basis, pfs] = coprime_factorization<T>(mods); int k = len(basis); vc<pair<T, int>> dat(k, {1, 0}); FOR(i, n) { for (auto&& [pid, exp]: pfs[i]) { T mod = 1; FOR(exp) mod *= basis[pid]; T val = vals[i] % mod; auto& [mod1, val1] = dat[pid]; if (mod > mod1) swap(mod, mod1), swap(val, val1); if (val1 % mod != val) { ng = 1; return; } } } mods.clear(), vals.clear(); for (auto&& [mod, val]: dat) { mods.eb(mod), vals.eb(val); } n = len(vals); }; if (!coprime) { (n <= 10 ? reduction_by_coprime_factor() : reduction_by_factor()); } if (ng) return -1; if (n == 0) return 0; vc<ll> cfs(n); if (MAX(mods) < (1LL << 31)) { FOR(i, n) { Barrett bt(mods[i]); ll a = vals[i], prod = 1; FOR(j, i) { a = bt.modulo(a + cfs[j] * (mods[i] - prod)); prod = bt.mul(prod, mods[j]); } cfs[i] = bt.mul(mod_inv(prod, mods[i]), a); } } else { FOR(i, n) { ll a = vals[i], prod = 1; FOR(j, i) { a = (a + i128(cfs[j]) * (mods[i] - prod)) % mods[i]; prod = i128(prod) * mods[j] % mods[i]; } cfs[i] = mod_inv(prod, mods[i]) * i128(a) % mods[i]; } } i128 ret = 0, prod = 1; FOR(i, n) { ret += prod * cfs[i], prod *= mods[i]; if (new_mod != -1) { ret %= new_mod, prod %= new_mod; } } return ret; }
#line 2 "mod/mod_inv.hpp" // long でも大丈夫 // (val * x - 1) が mod の倍数になるようにする // 特に mod=0 なら x=0 が満たす ll mod_inv(ll val, ll mod) { if (mod == 0) return 0; mod = abs(mod); val %= mod; if (val < 0) val += mod; ll a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } if (u < 0) u += mod; return u; } #line 1 "nt/coprime_factorization.hpp" /* 互いに素な整数 p1, p2, ..., pk を用いて n_i = prod p_i^e_i と表す. [21,60,140,400] [3,7,20], [[(0,1),(1,1)],[(0,1),(2,1)],[(1,1),(2,1)],[(2,2)]] */ template <typename T> pair<vc<T>, vvc<pair<int, int>>> coprime_factorization(vc<T> nums) { vc<T> basis; for (T val: nums) { vc<T> new_basis; for (T x: basis) { if (val == 1) { new_basis.eb(x); continue; } vc<T> dat = {val, x}; FOR(p, 1, len(dat)) { FOR(i, p) { while (1) { if (dat[p] > 1 && dat[i] % dat[p] == 0) dat[i] /= dat[p]; elif (dat[i] > 1 && dat[p] % dat[i] == 0) dat[p] /= dat[i]; else break; } T g = gcd(dat[i], dat[p]); if (g == 1 || g == dat[i] || g == dat[p]) continue; dat[i] /= g, dat[p] /= g, dat.eb(g); } } val = dat[0]; FOR(i, 1, len(dat)) if (dat[i] != 1) new_basis.eb(dat[i]); } if (val > 1) new_basis.eb(val); swap(basis, new_basis); } sort(all(basis)); vvc<pair<int, int>> res(len(nums)); FOR(i, len(nums)) { T x = nums[i]; FOR(j, len(basis)) { int e = 0; while (x % basis[j] == 0) x /= basis[j], ++e; if (e) res[i].eb(j, e); } } return {basis, res}; } #line 2 "nt/factor.hpp" #line 2 "random/base.hpp" u64 RNG_64() { static uint64_t x_ = uint64_t(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL; x_ ^= x_ << 7; return x_ ^= x_ >> 9; } u64 RNG(u64 lim) { return RNG_64() % lim; } ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); } #line 2 "mod/mongomery_modint.hpp" // odd mod. // x の代わりに rx を持つ template <int id, typename U1, typename U2> struct Mongomery_modint { using mint = Mongomery_modint; inline static U1 m, r, n2; static constexpr int W = numeric_limits<U1>::digits; static void set_mod(U1 mod) { assert(mod & 1 && mod <= U1(1) << (W - 2)); m = mod, n2 = -U2(m) % m, r = m; FOR(5) r *= 2 - m * r; r = -r; assert(r * m == U1(-1)); } static U1 reduce(U2 b) { return (b + U2(U1(b) * r) * m) >> W; } U1 x; Mongomery_modint() : x(0) {} Mongomery_modint(U1 x) : x(reduce(U2(x) * n2)){}; U1 val() const { U1 y = reduce(x); return y >= m ? y - m : y; } mint &operator+=(mint y) { x = ((x += y.x) >= m ? x - m : x); return *this; } mint &operator-=(mint y) { x -= (x >= y.x ? y.x : y.x - m); return *this; } mint &operator*=(mint y) { x = reduce(U2(x) * y.x); return *this; } mint operator+(mint y) const { return mint(*this) += y; } mint operator-(mint y) const { return mint(*this) -= y; } mint operator*(mint y) const { return mint(*this) *= y; } bool operator==(mint y) const { return (x >= m ? x - m : x) == (y.x >= m ? y.x - m : y.x); } bool operator!=(mint y) const { return not operator==(y); } mint pow(ll n) const { assert(n >= 0); mint y = 1, z = *this; for (; n; n >>= 1, z *= z) if (n & 1) y *= z; return y; } }; template <int id> using Mongomery_modint_32 = Mongomery_modint<id, u32, u64>; template <int id> using Mongomery_modint_64 = Mongomery_modint<id, u64, u128>; #line 3 "nt/primetest.hpp" bool primetest(const u64 x) { assert(x < u64(1) << 62); if (x == 2 or x == 3 or x == 5 or x == 7) return true; if (x % 2 == 0 or x % 3 == 0 or x % 5 == 0 or x % 7 == 0) return false; if (x < 121) return x > 1; const u64 d = (x - 1) >> lowbit(x - 1); using mint = Mongomery_modint_64<202311020>; mint::set_mod(x); const mint one(u64(1)), minus_one(x - 1); auto ok = [&](u64 a) -> bool { auto y = mint(a).pow(d); u64 t = d; while (y != one && y != minus_one && t != x - 1) y *= y, t <<= 1; if (y != minus_one && t % 2 == 0) return false; return true; }; if (x < (u64(1) << 32)) { for (u64 a: {2, 7, 61}) if (!ok(a)) return false; } else { for (u64 a: {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) { if (!ok(a)) return false; } } return true; } #line 5 "nt/factor.hpp" template <typename mint> ll rho(ll n, ll c) { assert(n > 1); const mint cc(c); auto f = [&](mint x) { return x * x + cc; }; mint x = 1, y = 2, z = 1, q = 1; ll g = 1; const ll m = 1LL << (__lg(n) / 5); for (ll r = 1; g == 1; r <<= 1) { x = y; FOR(r) y = f(y); for (ll k = 0; k < r && g == 1; k += m) { z = y; FOR(min(m, r - k)) y = f(y), q *= x - y; g = gcd(q.val(), n); } } if (g == n) do { z = f(z); g = gcd((x - z).val(), n); } while (g == 1); return g; } ll find_prime_factor(ll n) { assert(n > 1); if (primetest(n)) return n; FOR(100) { ll m = 0; if (n < (1 << 30)) { using mint = Mongomery_modint_32<20231025>; mint::set_mod(n); m = rho<mint>(n, RNG(0, n)); } else { using mint = Mongomery_modint_64<20231025>; mint::set_mod(n); m = rho<mint>(n, RNG(0, n)); } if (primetest(m)) return m; n = m; } assert(0); return -1; } // ソートしてくれる vc<pair<ll, int>> factor(ll n) { assert(n >= 1); vc<pair<ll, int>> pf; FOR(p, 2, 100) { if (p * p > n) break; if (n % p == 0) { ll e = 0; do { n /= p, e += 1; } while (n % p == 0); pf.eb(p, e); } } while (n > 1) { ll p = find_prime_factor(n); ll e = 0; do { n /= p, e += 1; } while (n % p == 0); pf.eb(p, e); } sort(all(pf)); return pf; } vc<pair<ll, int>> factor_by_lpf(ll n, vc<int>& lpf) { vc<pair<ll, int>> res; while (n > 1) { int p = lpf[n]; int e = 0; while (n % p == 0) { n /= p; ++e; } res.eb(p, e); } return res; } #line 2 "mod/barrett.hpp" // https://github.com/atcoder/ac-library/blob/master/atcoder/internal_math.hpp struct Barrett { u32 m; u64 im; explicit Barrett(u32 m = 1) : m(m), im(u64(-1) / m + 1) {} u32 umod() const { return m; } u32 modulo(u64 z) { if (m == 1) return 0; u64 x = (u64)(((unsigned __int128)(z)*im) >> 64); u64 y = x * m; return (z - y + (z < y ? m : 0)); } u64 floor(u64 z) { if (m == 1) return z; u64 x = (u64)(((unsigned __int128)(z)*im) >> 64); u64 y = x * m; return (z < y ? x - 1 : x); } pair<u64, u32> divmod(u64 z) { if (m == 1) return {z, 0}; u64 x = (u64)(((unsigned __int128)(z)*im) >> 64); u64 y = x * m; if (z < y) return {x - 1, z - y + m}; return {x, z - y}; } u32 mul(u32 a, u32 b) { return modulo(u64(a) * b); } }; struct Barrett_64 { u128 mod, mh, ml; explicit Barrett_64(u64 mod = 1) : mod(mod) { u128 m = u128(-1) / mod; if (m * mod + mod == u128(0)) ++m; mh = m >> 64; ml = m & u64(-1); } u64 umod() const { return mod; } u64 modulo(u128 x) { u128 z = (x & u64(-1)) * ml; z = (x & u64(-1)) * mh + (x >> 64) * ml + (z >> 64); z = (x >> 64) * mh + (z >> 64); x -= z * mod; return x < mod ? x : x - mod; } u64 mul(u64 a, u64 b) { return modulo(u128(a) * b); } }; #line 5 "nt/crt.hpp" // 非負最小解を mod new_mod で返す (garner), なければ -1. template <typename T> i128 CRT(vc<T> vals, vc<T> mods, ll new_mod = -1, bool coprime = false) { int n = len(vals); FOR(i, n) { vals[i] = ((vals[i] %= mods[i]) >= 0 ? vals[i] : vals[i] + mods[i]); } bool ng = 0; auto reduction_by_factor = [&]() -> void { unordered_map<T, pair<T, int>> MP; FOR(i, n) { for (auto&& [p, e]: factor(mods[i])) { T mod = 1; FOR(e) mod *= p; T val = vals[i] % mod; if (!MP.count(p)) { MP[p] = {mod, val % mod}; continue; } auto& [mod1, val1] = MP[p]; if (mod > mod1) swap(mod, mod1), swap(val, val1); if (val1 % mod != val) { ng = 1; return; } } } mods.clear(), vals.clear(); for (auto&& [p, x]: MP) { auto [mod, val] = x; mods.eb(mod), vals.eb(val); } n = len(vals); }; auto reduction_by_coprime_factor = [&]() -> void { auto [basis, pfs] = coprime_factorization<T>(mods); int k = len(basis); vc<pair<T, int>> dat(k, {1, 0}); FOR(i, n) { for (auto&& [pid, exp]: pfs[i]) { T mod = 1; FOR(exp) mod *= basis[pid]; T val = vals[i] % mod; auto& [mod1, val1] = dat[pid]; if (mod > mod1) swap(mod, mod1), swap(val, val1); if (val1 % mod != val) { ng = 1; return; } } } mods.clear(), vals.clear(); for (auto&& [mod, val]: dat) { mods.eb(mod), vals.eb(val); } n = len(vals); }; if (!coprime) { (n <= 10 ? reduction_by_coprime_factor() : reduction_by_factor()); } if (ng) return -1; if (n == 0) return 0; vc<ll> cfs(n); if (MAX(mods) < (1LL << 31)) { FOR(i, n) { Barrett bt(mods[i]); ll a = vals[i], prod = 1; FOR(j, i) { a = bt.modulo(a + cfs[j] * (mods[i] - prod)); prod = bt.mul(prod, mods[j]); } cfs[i] = bt.mul(mod_inv(prod, mods[i]), a); } } else { FOR(i, n) { ll a = vals[i], prod = 1; FOR(j, i) { a = (a + i128(cfs[j]) * (mods[i] - prod)) % mods[i]; prod = i128(prod) * mods[j] % mods[i]; } cfs[i] = mod_inv(prod, mods[i]) * i128(a) % mods[i]; } } i128 ret = 0, prod = 1; FOR(i, n) { ret += prod * cfs[i], prod *= mods[i]; if (new_mod != -1) { ret %= new_mod, prod %= new_mod; } } return ret; }