This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "nt/array_on_divisors.hpp"
#include "nt/factor.hpp" #include "ds/hashmap.hpp" template <typename T> struct Array_On_Divisors { vc<pair<ll, int>> pf; vc<ll> divs; vc<T> dat; HashMap<int> MP; Array_On_Divisors(ll N = 1) { build(N); } Array_On_Divisors(vc<pair<ll, int>> pf) { build(pf); } void build(ll N) { build(factor(N)); } void build(vc<pair<ll, int>> pfs) { if (!pf.empty() && pf == pfs) return; pf = pfs; ll n = 1; for (auto&& [p, e]: pf) n *= (e + 1); divs.assign(n, 1); dat.assign(n, T{}); int nxt = 1; for (auto&& [p, e]: pf) { int L = nxt; ll q = p; FOR(e) { FOR(i, L) { divs[nxt++] = divs[i] * q; } q *= p; } } MP.build(n); FOR(i, n) MP[divs[i]] = i; } T& operator[](ll d) { return dat[MP[d]]; } // f(p, k) を与える → 乗法的に拡張 template <typename F> void set_multiplicative(F f) { dat.reserve(len(divs)); dat = {T(1)}; for (auto&& [p, e]: pf) { int n = len(divs); FOR(k, 1, e + 1) { FOR(i, n) dat.eb(dat[i] * f(p, k)); } } } void set_euler_phi() { dat.resize(len(divs)); FOR(i, len(divs)) dat[i] = T(divs[i]); divisor_mobius(); } void set_mobius() { set_multiplicative([&](ll p, int k) -> T { if (k >= 2) return T(0); return (k == 1 ? T(-1) : T(0)); }); } void multiplier_zeta() { ll k = 1; for (auto&& [p, e]: pf) { ll mod = k * (e + 1); FOR(i, len(divs) / mod) { FOR_R(j, mod - k) { dat[mod * i + j] += dat[mod * i + j + k]; } } k *= (e + 1); } } void multiplier_mobius() { ll k = 1; for (auto&& [p, e]: pf) { ll mod = k * (e + 1); FOR(i, len(divs) / mod) { FOR(j, mod - k) { dat[mod * i + j] -= dat[mod * i + j + k]; } } k *= (e + 1); } } void divisor_zeta() { ll k = 1; for (auto&& [p, e]: pf) { ll mod = k * (e + 1); FOR(i, len(divs) / mod) { FOR(j, mod - k) { dat[mod * i + j + k] += dat[mod * i + j]; } } k *= (e + 1); } } void divisor_mobius() { ll k = 1; for (auto&& [p, e]: pf) { ll mod = k * (e + 1); FOR(i, len(divs) / mod) { FOR_R(j, mod - k) { dat[mod * i + j + k] -= dat[mod * i + j]; } } k *= (e + 1); } } // (Ta,Tb)->T : a-b template <typename F> void divisor_mobius(F SUB) { ll k = 1; for (auto&& [p, e]: pf) { ll mod = k * (e + 1); FOR(i, len(divs) / mod) { FOR_R(j, mod - k) { dat[mod * i + j + k] = SUB(dat[mod * i + j + k], dat[mod * i + j]); } } k *= (e + 1); } } // ADD(Ta,Tb)->T : a+b template <typename F> void multiplier_zeta(F ADD) { ll k = 1; for (auto&& [p, e]: pf) { ll mod = k * (e + 1); FOR(i, len(divs) / mod) { FOR_R(j, mod - k) { dat[mod * i + j] = ADD(dat[mod * i + j], dat[mod * i + j + k]); } } k *= (e + 1); } } // SUB(Ta,Tb)->T : a-=b template <typename F> void multiplier_mobius(F SUB) { ll k = 1; for (auto&& [p, e]: pf) { ll mod = k * (e + 1); FOR(i, len(divs) / mod) { FOR(j, mod - k) { dat[mod * i + j] = SUB(dat[mod * i + j], dat[mod * i + j + k]); } } k *= (e + 1); } } // ADD(T&a,Tb)->void : a+=b template <typename F> void divisor_zeta(F ADD) { ll k = 1; for (auto&& [p, e]: pf) { ll mod = k * (e + 1); FOR(i, len(divs) / mod) { FOR(j, mod - k) { dat[mod * i + j + k] = ADD(dat[mod * i + j + k], dat[mod * i + j]); } } k *= (e + 1); } } template <typename F> void set(F f) { FOR(i, len(divs)) { dat[i] = f(divs[i]); } } // (d, fd) // &fd で受け取れば代入とかもできます template <typename F> void enumerate(F f) { FOR(i, len(divs)) { f(divs[i], dat[i]); } } };
#line 2 "nt/factor.hpp" #line 2 "random/base.hpp" u64 RNG_64() { static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL; x_ ^= x_ << 7; return x_ ^= x_ >> 9; } u64 RNG(u64 lim) { return RNG_64() % lim; } ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); } #line 2 "mod/mongomery_modint.hpp" // odd mod. // x の代わりに rx を持つ template <int id, typename U1, typename U2> struct Mongomery_modint { using mint = Mongomery_modint; inline static U1 m, r, n2; static constexpr int W = numeric_limits<U1>::digits; static void set_mod(U1 mod) { assert(mod & 1 && mod <= U1(1) << (W - 2)); m = mod, n2 = -U2(m) % m, r = m; FOR(5) r *= 2 - m * r; r = -r; assert(r * m == U1(-1)); } static U1 reduce(U2 b) { return (b + U2(U1(b) * r) * m) >> W; } U1 x; Mongomery_modint() : x(0) {} Mongomery_modint(U1 x) : x(reduce(U2(x) * n2)){}; U1 val() const { U1 y = reduce(x); return y >= m ? y - m : y; } mint &operator+=(mint y) { x = ((x += y.x) >= m ? x - m : x); return *this; } mint &operator-=(mint y) { x -= (x >= y.x ? y.x : y.x - m); return *this; } mint &operator*=(mint y) { x = reduce(U2(x) * y.x); return *this; } mint operator+(mint y) const { return mint(*this) += y; } mint operator-(mint y) const { return mint(*this) -= y; } mint operator*(mint y) const { return mint(*this) *= y; } bool operator==(mint y) const { return (x >= m ? x - m : x) == (y.x >= m ? y.x - m : y.x); } bool operator!=(mint y) const { return not operator==(y); } mint pow(ll n) const { assert(n >= 0); mint y = 1, z = *this; for (; n; n >>= 1, z *= z) if (n & 1) y *= z; return y; } }; template <int id> using Mongomery_modint_32 = Mongomery_modint<id, u32, u64>; template <int id> using Mongomery_modint_64 = Mongomery_modint<id, u64, u128>; #line 3 "nt/primetest.hpp" bool primetest(const u64 x) { assert(x < u64(1) << 62); if (x == 2 or x == 3 or x == 5 or x == 7) return true; if (x % 2 == 0 or x % 3 == 0 or x % 5 == 0 or x % 7 == 0) return false; if (x < 121) return x > 1; const u64 d = (x - 1) >> lowbit(x - 1); using mint = Mongomery_modint_64<202311020>; mint::set_mod(x); const mint one(u64(1)), minus_one(x - 1); auto ok = [&](u64 a) -> bool { auto y = mint(a).pow(d); u64 t = d; while (y != one && y != minus_one && t != x - 1) y *= y, t <<= 1; if (y != minus_one && t % 2 == 0) return false; return true; }; if (x < (u64(1) << 32)) { for (u64 a: {2, 7, 61}) if (!ok(a)) return false; } else { for (u64 a: {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) { if (!ok(a)) return false; } } return true; } #line 5 "nt/factor.hpp" template <typename mint> ll rho(ll n, ll c) { assert(n > 1); const mint cc(c); auto f = [&](mint x) { return x * x + cc; }; mint x = 1, y = 2, z = 1, q = 1; ll g = 1; const ll m = 1LL << (__lg(n) / 5); for (ll r = 1; g == 1; r <<= 1) { x = y; FOR(r) y = f(y); for (ll k = 0; k < r && g == 1; k += m) { z = y; FOR(min(m, r - k)) y = f(y), q *= x - y; g = gcd(q.val(), n); } } if (g == n) do { z = f(z); g = gcd((x - z).val(), n); } while (g == 1); return g; } ll find_prime_factor(ll n) { assert(n > 1); if (primetest(n)) return n; FOR(100) { ll m = 0; if (n < (1 << 30)) { using mint = Mongomery_modint_32<20231025>; mint::set_mod(n); m = rho<mint>(n, RNG(0, n)); } else { using mint = Mongomery_modint_64<20231025>; mint::set_mod(n); m = rho<mint>(n, RNG(0, n)); } if (primetest(m)) return m; n = m; } assert(0); return -1; } // ソートしてくれる vc<pair<ll, int>> factor(ll n) { assert(n >= 1); vc<pair<ll, int>> pf; FOR(p, 2, 100) { if (p * p > n) break; if (n % p == 0) { ll e = 0; do { n /= p, e += 1; } while (n % p == 0); pf.eb(p, e); } } while (n > 1) { ll p = find_prime_factor(n); ll e = 0; do { n /= p, e += 1; } while (n % p == 0); pf.eb(p, e); } sort(all(pf)); return pf; } vc<pair<ll, int>> factor_by_lpf(ll n, vc<int>& lpf) { vc<pair<ll, int>> res; while (n > 1) { int p = lpf[n]; int e = 0; while (n % p == 0) { n /= p; ++e; } res.eb(p, e); } return res; } #line 2 "ds/hashmap.hpp" // u64 -> Val template <typename Val> struct HashMap { // n は入れたいものの個数で ok HashMap(u32 n = 0) { build(n); } void build(u32 n) { u32 k = 8; while (k < n * 2) k *= 2; cap = k / 2, mask = k - 1; key.resize(k), val.resize(k), used.assign(k, 0); } // size を保ったまま. size=0 にするときは build すること. void clear() { used.assign(len(used), 0); cap = (mask + 1) / 2; } int size() { return len(used) / 2 - cap; } int index(const u64& k) { int i = 0; for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {} return i; } Val& operator[](const u64& k) { if (cap == 0) extend(); int i = index(k); if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; } return val[i]; } Val get(const u64& k, Val default_value) { int i = index(k); return (used[i] ? val[i] : default_value); } bool count(const u64& k) { int i = index(k); return used[i] && key[i] == k; } // f(key, val) template <typename F> void enumerate_all(F f) { FOR(i, len(used)) if (used[i]) f(key[i], val[i]); } private: u32 cap, mask; vc<u64> key; vc<Val> val; vc<bool> used; u64 hash(u64 x) { static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count(); x += FIXED_RANDOM; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return (x ^ (x >> 31)) & mask; } void extend() { vc<pair<u64, Val>> dat; dat.reserve(len(used) / 2 - cap); FOR(i, len(used)) { if (used[i]) dat.eb(key[i], val[i]); } build(2 * len(dat)); for (auto& [a, b]: dat) (*this)[a] = b; } }; #line 3 "nt/array_on_divisors.hpp" template <typename T> struct Array_On_Divisors { vc<pair<ll, int>> pf; vc<ll> divs; vc<T> dat; HashMap<int> MP; Array_On_Divisors(ll N = 1) { build(N); } Array_On_Divisors(vc<pair<ll, int>> pf) { build(pf); } void build(ll N) { build(factor(N)); } void build(vc<pair<ll, int>> pfs) { if (!pf.empty() && pf == pfs) return; pf = pfs; ll n = 1; for (auto&& [p, e]: pf) n *= (e + 1); divs.assign(n, 1); dat.assign(n, T{}); int nxt = 1; for (auto&& [p, e]: pf) { int L = nxt; ll q = p; FOR(e) { FOR(i, L) { divs[nxt++] = divs[i] * q; } q *= p; } } MP.build(n); FOR(i, n) MP[divs[i]] = i; } T& operator[](ll d) { return dat[MP[d]]; } // f(p, k) を与える → 乗法的に拡張 template <typename F> void set_multiplicative(F f) { dat.reserve(len(divs)); dat = {T(1)}; for (auto&& [p, e]: pf) { int n = len(divs); FOR(k, 1, e + 1) { FOR(i, n) dat.eb(dat[i] * f(p, k)); } } } void set_euler_phi() { dat.resize(len(divs)); FOR(i, len(divs)) dat[i] = T(divs[i]); divisor_mobius(); } void set_mobius() { set_multiplicative([&](ll p, int k) -> T { if (k >= 2) return T(0); return (k == 1 ? T(-1) : T(0)); }); } void multiplier_zeta() { ll k = 1; for (auto&& [p, e]: pf) { ll mod = k * (e + 1); FOR(i, len(divs) / mod) { FOR_R(j, mod - k) { dat[mod * i + j] += dat[mod * i + j + k]; } } k *= (e + 1); } } void multiplier_mobius() { ll k = 1; for (auto&& [p, e]: pf) { ll mod = k * (e + 1); FOR(i, len(divs) / mod) { FOR(j, mod - k) { dat[mod * i + j] -= dat[mod * i + j + k]; } } k *= (e + 1); } } void divisor_zeta() { ll k = 1; for (auto&& [p, e]: pf) { ll mod = k * (e + 1); FOR(i, len(divs) / mod) { FOR(j, mod - k) { dat[mod * i + j + k] += dat[mod * i + j]; } } k *= (e + 1); } } void divisor_mobius() { ll k = 1; for (auto&& [p, e]: pf) { ll mod = k * (e + 1); FOR(i, len(divs) / mod) { FOR_R(j, mod - k) { dat[mod * i + j + k] -= dat[mod * i + j]; } } k *= (e + 1); } } // (Ta,Tb)->T : a-b template <typename F> void divisor_mobius(F SUB) { ll k = 1; for (auto&& [p, e]: pf) { ll mod = k * (e + 1); FOR(i, len(divs) / mod) { FOR_R(j, mod - k) { dat[mod * i + j + k] = SUB(dat[mod * i + j + k], dat[mod * i + j]); } } k *= (e + 1); } } // ADD(Ta,Tb)->T : a+b template <typename F> void multiplier_zeta(F ADD) { ll k = 1; for (auto&& [p, e]: pf) { ll mod = k * (e + 1); FOR(i, len(divs) / mod) { FOR_R(j, mod - k) { dat[mod * i + j] = ADD(dat[mod * i + j], dat[mod * i + j + k]); } } k *= (e + 1); } } // SUB(Ta,Tb)->T : a-=b template <typename F> void multiplier_mobius(F SUB) { ll k = 1; for (auto&& [p, e]: pf) { ll mod = k * (e + 1); FOR(i, len(divs) / mod) { FOR(j, mod - k) { dat[mod * i + j] = SUB(dat[mod * i + j], dat[mod * i + j + k]); } } k *= (e + 1); } } // ADD(T&a,Tb)->void : a+=b template <typename F> void divisor_zeta(F ADD) { ll k = 1; for (auto&& [p, e]: pf) { ll mod = k * (e + 1); FOR(i, len(divs) / mod) { FOR(j, mod - k) { dat[mod * i + j + k] = ADD(dat[mod * i + j + k], dat[mod * i + j]); } } k *= (e + 1); } } template <typename F> void set(F f) { FOR(i, len(divs)) { dat[i] = f(divs[i]); } } // (d, fd) // &fd で受け取れば代入とかもできます template <typename F> void enumerate(F f) { FOR(i, len(divs)) { f(divs[i], dat[i]); } } };