This documentation is automatically generated by online-judge-tools/verification-helper
#include "mod/tetration.hpp"
#include "mod/barrett.hpp"
#include "nt/euler_phi.hpp"
int tetration(vc<ll> a, int mod) {
for (auto&& x: a) assert(x > 0);
// a[0]^(a[1]^(a[2]^...))
vc<int> mod_chain = {mod};
while (mod_chain.back() > 1) mod_chain.eb(euler_phi(mod_chain.back()));
while (len(a) > len(mod_chain)) a.pop_back();
while (len(mod_chain) > len(a)) mod_chain.pop_back();
auto pow = [&](ll x, int n, int mod) -> int {
Barrett bt(mod);
if (x >= mod) x = bt.modulo(x) + mod;
ll v = 1;
do {
if (n & 1) {
v *= x;
if (v >= mod) v = bt.modulo(v) + mod;
}
x *= x;
if (x >= mod) x = bt.modulo(x) + mod;
n /= 2;
} while (n);
return v;
};
int v = 1;
FOR_R(i, len(a)) v = pow(a[i], v, mod_chain[i]);
return v % mod;
}
#line 2 "mod/barrett.hpp"
// https://github.com/atcoder/ac-library/blob/master/atcoder/internal_math.hpp
struct Barrett {
u32 m;
u64 im;
explicit Barrett(u32 m = 1) : m(m), im(u64(-1) / m + 1) {}
u32 umod() const { return m; }
u32 modulo(u64 z) {
if (m == 1) return 0;
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
return (z - y + (z < y ? m : 0));
}
u64 floor(u64 z) {
if (m == 1) return z;
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
return (z < y ? x - 1 : x);
}
pair<u64, u32> divmod(u64 z) {
if (m == 1) return {z, 0};
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
if (z < y) return {x - 1, z - y + m};
return {x, z - y};
}
u32 mul(u32 a, u32 b) { return modulo(u64(a) * b); }
};
struct Barrett_64 {
u128 mod, mh, ml;
explicit Barrett_64(u64 mod = 1) : mod(mod) {
u128 m = u128(-1) / mod;
if (m * mod + mod == u128(0)) ++m;
mh = m >> 64;
ml = m & u64(-1);
}
u64 umod() const { return mod; }
u64 modulo(u128 x) {
u128 z = (x & u64(-1)) * ml;
z = (x & u64(-1)) * mh + (x >> 64) * ml + (z >> 64);
z = (x >> 64) * mh + (z >> 64);
x -= z * mod;
return x < mod ? x : x - mod;
}
u64 mul(u64 a, u64 b) { return modulo(u128(a) * b); }
};
#line 2 "nt/primetable.hpp"
template <typename T = int>
vc<T> primetable(int LIM) {
++LIM;
const int S = 32768;
static int done = 2;
static vc<T> primes = {2}, sieve(S + 1);
if (done < LIM) {
done = LIM;
primes = {2}, sieve.assign(S + 1, 0);
const int R = LIM / 2;
primes.reserve(int(LIM / log(LIM) * 1.1));
vc<pair<int, int>> cp;
for (int i = 3; i <= S; i += 2) {
if (!sieve[i]) {
cp.eb(i, i * i / 2);
for (int j = i * i; j <= S; j += 2 * i) sieve[j] = 1;
}
}
for (int L = 1; L <= R; L += S) {
array<bool, S> block{};
for (auto& [p, idx]: cp)
for (int i = idx; i < S + L; idx = (i += p)) block[i - L] = 1;
FOR(i, min(S, R - L)) if (!block[i]) primes.eb((L + i) * 2 + 1);
}
}
int k = LB(primes, LIM + 1);
return {primes.begin(), primes.begin() + k};
}
#line 3 "nt/zeta.hpp"
template <typename T>
void divisor_zeta(vc<T>& A) {
assert(A[0] == 0);
int N = len(A) - 1;
auto P = primetable(N);
for (auto&& p: P) { FOR3(x, 1, N / p + 1) A[p * x] += A[x]; }
}
template <typename T>
void divisor_mobius(vc<T>& A) {
assert(A[0] == 0);
int N = len(A) - 1;
auto P = primetable(N);
for (auto&& p: P) { FOR3_R(x, 1, N / p + 1) A[p * x] -= A[x]; }
}
template <typename T>
void multiplier_zeta(vc<T>& A) {
assert(A[0] == 0);
int N = len(A) - 1;
auto P = primetable(N);
for (auto&& p: P) { FOR3_R(x, 1, N / p + 1) A[x] += A[p * x]; }
}
template <typename T>
void multiplier_mobius(vc<T>& A) {
assert(A[0] == 0);
int N = len(A) - 1;
auto P = primetable(N);
for (auto&& p: P) { FOR3(x, 1, N / p + 1) A[x] -= A[p * x]; }
}
#line 2 "nt/factor.hpp"
#line 2 "random/base.hpp"
u64 RNG_64() {
static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "mod/mongomery_modint.hpp"
// odd mod.
// x の代わりに rx を持つ
template <int id, typename U1, typename U2>
struct Mongomery_modint {
using mint = Mongomery_modint;
inline static U1 m, r, n2;
static constexpr int W = numeric_limits<U1>::digits;
static void set_mod(U1 mod) {
assert(mod & 1 && mod <= U1(1) << (W - 2));
m = mod, n2 = -U2(m) % m, r = m;
FOR(5) r *= 2 - m * r;
r = -r;
assert(r * m == U1(-1));
}
static U1 reduce(U2 b) { return (b + U2(U1(b) * r) * m) >> W; }
U1 x;
Mongomery_modint() : x(0) {}
Mongomery_modint(U1 x) : x(reduce(U2(x) * n2)){};
U1 val() const {
U1 y = reduce(x);
return y >= m ? y - m : y;
}
mint &operator+=(mint y) {
x = ((x += y.x) >= m ? x - m : x);
return *this;
}
mint &operator-=(mint y) {
x -= (x >= y.x ? y.x : y.x - m);
return *this;
}
mint &operator*=(mint y) {
x = reduce(U2(x) * y.x);
return *this;
}
mint operator+(mint y) const { return mint(*this) += y; }
mint operator-(mint y) const { return mint(*this) -= y; }
mint operator*(mint y) const { return mint(*this) *= y; }
bool operator==(mint y) const {
return (x >= m ? x - m : x) == (y.x >= m ? y.x - m : y.x);
}
bool operator!=(mint y) const { return not operator==(y); }
mint pow(ll n) const {
assert(n >= 0);
mint y = 1, z = *this;
for (; n; n >>= 1, z *= z)
if (n & 1) y *= z;
return y;
}
};
template <int id>
using Mongomery_modint_32 = Mongomery_modint<id, u32, u64>;
template <int id>
using Mongomery_modint_64 = Mongomery_modint<id, u64, u128>;
#line 3 "nt/primetest.hpp"
bool primetest(const u64 x) {
assert(x < u64(1) << 62);
if (x == 2 or x == 3 or x == 5 or x == 7) return true;
if (x % 2 == 0 or x % 3 == 0 or x % 5 == 0 or x % 7 == 0) return false;
if (x < 121) return x > 1;
const u64 d = (x - 1) >> lowbit(x - 1);
using mint = Mongomery_modint_64<202311020>;
mint::set_mod(x);
const mint one(u64(1)), minus_one(x - 1);
auto ok = [&](u64 a) -> bool {
auto y = mint(a).pow(d);
u64 t = d;
while (y != one && y != minus_one && t != x - 1) y *= y, t <<= 1;
if (y != minus_one && t % 2 == 0) return false;
return true;
};
if (x < (u64(1) << 32)) {
for (u64 a: {2, 7, 61})
if (!ok(a)) return false;
} else {
for (u64 a: {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) {
if (!ok(a)) return false;
}
}
return true;
}
#line 5 "nt/factor.hpp"
template <typename mint>
ll rho(ll n, ll c) {
assert(n > 1);
const mint cc(c);
auto f = [&](mint x) { return x * x + cc; };
mint x = 1, y = 2, z = 1, q = 1;
ll g = 1;
const ll m = 1LL << (__lg(n) / 5);
for (ll r = 1; g == 1; r <<= 1) {
x = y;
FOR(r) y = f(y);
for (ll k = 0; k < r && g == 1; k += m) {
z = y;
FOR(min(m, r - k)) y = f(y), q *= x - y;
g = gcd(q.val(), n);
}
}
if (g == n) do {
z = f(z);
g = gcd((x - z).val(), n);
} while (g == 1);
return g;
}
ll find_prime_factor(ll n) {
assert(n > 1);
if (primetest(n)) return n;
FOR(100) {
ll m = 0;
if (n < (1 << 30)) {
using mint = Mongomery_modint_32<20231025>;
mint::set_mod(n);
m = rho<mint>(n, RNG(0, n));
} else {
using mint = Mongomery_modint_64<20231025>;
mint::set_mod(n);
m = rho<mint>(n, RNG(0, n));
}
if (primetest(m)) return m;
n = m;
}
assert(0);
return -1;
}
// ソートしてくれる
vc<pair<ll, int>> factor(ll n) {
assert(n >= 1);
vc<pair<ll, int>> pf;
FOR(p, 2, 100) {
if (p * p > n) break;
if (n % p == 0) {
ll e = 0;
do { n /= p, e += 1; } while (n % p == 0);
pf.eb(p, e);
}
}
while (n > 1) {
ll p = find_prime_factor(n);
ll e = 0;
do { n /= p, e += 1; } while (n % p == 0);
pf.eb(p, e);
}
sort(all(pf));
return pf;
}
vc<pair<ll, int>> factor_by_lpf(ll n, vc<int>& lpf) {
vc<pair<ll, int>> res;
while (n > 1) {
int p = lpf[n];
int e = 0;
while (n % p == 0) {
n /= p;
++e;
}
res.eb(p, e);
}
return res;
}
#line 3 "nt/euler_phi.hpp"
ll euler_phi(ll n) {
auto pf = factor(n);
for (auto&& [p, e]: pf) n -= n / p;
return n;
}
template <typename T>
vc<T> euler_phi_table(ll n) {
vc<T> A(n + 1);
FOR(i, 1, n + 1) A[i] = T(i);
divisor_mobius(A);
return A;
}
#line 3 "mod/tetration.hpp"
int tetration(vc<ll> a, int mod) {
for (auto&& x: a) assert(x > 0);
// a[0]^(a[1]^(a[2]^...))
vc<int> mod_chain = {mod};
while (mod_chain.back() > 1) mod_chain.eb(euler_phi(mod_chain.back()));
while (len(a) > len(mod_chain)) a.pop_back();
while (len(mod_chain) > len(a)) mod_chain.pop_back();
auto pow = [&](ll x, int n, int mod) -> int {
Barrett bt(mod);
if (x >= mod) x = bt.modulo(x) + mod;
ll v = 1;
do {
if (n & 1) {
v *= x;
if (v >= mod) v = bt.modulo(v) + mod;
}
x *= x;
if (x >= mod) x = bt.modulo(x) + mod;
n /= 2;
} while (n);
return v;
};
int v = 1;
FOR_R(i, len(a)) v = pow(a[i], v, mod_chain[i]);
return v % mod;
}