This documentation is automatically generated by online-judge-tools/verification-helper
#include "mod/mod_kth_root.hpp"
#include "nt/primetest.hpp"
#include "mod/primitive_root.hpp"
#include "mod/mod_inv.hpp"
#include "ds/hashmap.hpp"
// mod は int
int mod_kth_root(ll k, ll a, int mod) {
static HashMap<int, 20, true> MP;
MP.reset();
assert(primetest(mod) && 0 <= a && a < mod);
if (k == 0) return (a == 1 ? 1 : -1);
if (a == 0) return 0;
if (mod == 2) return a;
k %= mod - 1;
Barrett bt(mod);
ll g = gcd(k, mod - 1);
if (mod_pow(a, (mod - 1) / g, mod) != 1) return -1;
ll c = mod_inv(k / g, (mod - 1) / g);
a = mod_pow(a, c, mod);
k = (k * c) % (mod - 1);
if (k == 0) return 1;
g = primitive_root(mod);
auto solve_pp = [&](ll p, int e, ll a) -> ll {
int f = 0;
ll pf = 1;
while ((mod - 1) % (pf * p) == 0) ++f, pf *= p;
ll m = (mod - 1) / pf;
/*
・位数 Qm の巡回群
・a の p^e 乗根をとりたい。持つことは分かっている
・a / x^{p^e} = b を維持する。まずは、b が p で割れる回数を増やしていく。
*/
ll x = 1, b = a, c = f - e; // b ^ {mp^c} = 1
int pc = 1;
FOR(c) pc *= p;
int pe = 1;
FOR(e) pe *= p;
// 必要ならば原始 p 乗根に関する離散対数問題のセットアップ
ll G = mod_pow(g, (mod - 1) / p, mod);
int M = 0;
MP.reset();
ll GM_inv = -1;
if (c) {
while (M * M < p) ++M;
ll Gpow = 1;
FOR(m, M) {
MP[Gpow] = m;
Gpow = bt.mul(Gpow, G);
}
GM_inv = mod_pow(Gpow, mod - 2, mod);
}
while (c) {
/*
b^{mp^c} = 1 が分かっている。(b/x^{p^e}})^{mp^{c-1}} = 1 にしたい。
x = g^{p^{f-c-e}*k} として探す。原始 p 乗根 B, G に対する B = G^k に帰着。
*/
ll B = mod_pow(b, m * pc / p, mod);
int k = [&](ll B) -> int {
FOR(m, M + 1) {
if (MP.count(B)) return m * M + MP[B];
B = bt.mul(B, GM_inv);
}
return -1;
}(B);
x = bt.mul(x, mod_pow(g, pf / pc / pe * k, mod));
ll exp = pf / pc * k % (mod - 1);
b = bt.mul(b, mod_pow(g, mod - 1 - exp, mod));
--c;
pc /= p;
}
int k = pe - mod_inv(m, pe);
k = (k * m + 1) / pe;
ll y = mod_pow(b, k, mod);
x = bt.mul(x, y);
return x;
};
auto pf = factor(k);
for (auto&& [p, e]: pf) a = solve_pp(p, e, a);
return a;
}
ll mod_kth_root_64(ll k, ll a, ll mod) {
static HashMap<ll, 20, true> MP;
MP.reset();
assert(primetest(mod) && 0 <= a && a < mod);
if (k == 0) return (a == 1 ? 1 : -1);
if (a == 0) return 0;
if (mod == 2) return a;
k %= mod - 1;
ll g = gcd(k, mod - 1);
if (mod_pow_64(a, (mod - 1) / g, mod) != 1) return -1;
ll c = mod_inv(k / g, (mod - 1) / g);
a = mod_pow_64(a, c, mod);
k = i128(k) * c % (mod - 1);
if (k == 0) return 1;
g = primitive_root_64(mod);
auto solve_pp = [&](ll p, ll e, ll a) -> ll {
ll f = 0;
ll pf = 1;
while (((mod - 1) / pf) % p == 0) ++f, pf *= p;
ll m = (mod - 1) / pf;
/*
・位数 Qm の巡回群
・a の p^e 乗根をとりたい。持つことは分かっている
・a / x^{p^e} = b を維持する。まずは、b が p で割れる回数を増やしていく。
*/
ll x = 1, b = a, c = f - e; // b ^ {mp^c} = 1
ll pc = 1;
FOR(c) pc *= p;
ll pe = 1;
FOR(e) pe *= p;
// 必要ならば原始 p 乗根に関する離散対数問題のセットアップ
ll G = mod_pow_64(g, (mod - 1) / p, mod);
ll M = 0;
ll GM_inv = -1;
if (c) {
while (M * M < p) ++M;
MP.reset();
ll Gpow = 1;
FOR(m, M) {
MP[Gpow] = m;
Gpow = i128(Gpow) * G % mod;
}
GM_inv = mod_pow_64(Gpow, mod - 2, mod);
}
while (c) {
/*
b^{mp^c} = 1 が分かっている。(b/x^{p^e}})^{mp^{c-1}} = 1 にしたい。
x = g^{p^{f-c-e}*k} として探す。原始 p 乗根 B, G に対する B = G^k に帰着。
*/
ll B = mod_pow_64(b, pc / p * m, mod);
ll k = [&](ll B) -> ll {
FOR(m, M + 1) {
if (MP.count(B)) return m * M + MP[B];
B = i128(B) * GM_inv % mod;
}
return -1;
}(B);
x = i128(x) * mod_pow_64(g, pf / pc / pe * k, mod) % mod;
ll exp = pf / pc * i128(k) % (mod - 1);
b = i128(b) * mod_pow_64(g, mod - 1 - exp, mod) % mod;
--c;
pc /= p;
}
ll k = pe - mod_inv(m, pe);
k = (i128(k) * m + 1) / pe;
ll y = mod_pow_64(b, k, mod);
x = i128(x) * y % mod;
return x;
};
auto pf = factor(k);
for (auto&& [p, e]: pf) a = solve_pp(p, e, a);
return a;
}
#line 2 "mod/mongomery_modint.hpp"
// odd mod.
// x の代わりに rx を持つ
template <int id, typename U1, typename U2>
struct Mongomery_modint {
using mint = Mongomery_modint;
inline static U1 m, r, n2;
static constexpr int W = numeric_limits<U1>::digits;
static void set_mod(U1 mod) {
assert(mod & 1 && mod <= U1(1) << (W - 2));
m = mod, n2 = -U2(m) % m, r = m;
FOR(5) r *= 2 - m * r;
r = -r;
assert(r * m == U1(-1));
}
static U1 reduce(U2 b) { return (b + U2(U1(b) * r) * m) >> W; }
U1 x;
Mongomery_modint() : x(0) {}
Mongomery_modint(U1 x) : x(reduce(U2(x) * n2)){};
U1 val() const {
U1 y = reduce(x);
return y >= m ? y - m : y;
}
mint &operator+=(mint y) {
x = ((x += y.x) >= m ? x - m : x);
return *this;
}
mint &operator-=(mint y) {
x -= (x >= y.x ? y.x : y.x - m);
return *this;
}
mint &operator*=(mint y) {
x = reduce(U2(x) * y.x);
return *this;
}
mint operator+(mint y) const { return mint(*this) += y; }
mint operator-(mint y) const { return mint(*this) -= y; }
mint operator*(mint y) const { return mint(*this) *= y; }
bool operator==(mint y) const {
return (x >= m ? x - m : x) == (y.x >= m ? y.x - m : y.x);
}
bool operator!=(mint y) const { return not operator==(y); }
mint pow(ll n) const {
assert(n >= 0);
mint y = 1, z = *this;
for (; n; n >>= 1, z *= z)
if (n & 1) y *= z;
return y;
}
};
template <int id>
using Mongomery_modint_32 = Mongomery_modint<id, u32, u64>;
template <int id>
using Mongomery_modint_64 = Mongomery_modint<id, u64, u128>;
#line 3 "nt/primetest.hpp"
bool primetest(const u64 x) {
assert(x < u64(1) << 62);
if (x == 2 or x == 3 or x == 5 or x == 7) return true;
if (x % 2 == 0 or x % 3 == 0 or x % 5 == 0 or x % 7 == 0) return false;
if (x < 121) return x > 1;
const u64 d = (x - 1) >> lowbit(x - 1);
using mint = Mongomery_modint_64<202311020>;
mint::set_mod(x);
const mint one(u64(1)), minus_one(x - 1);
auto ok = [&](u64 a) -> bool {
auto y = mint(a).pow(d);
u64 t = d;
while (y != one && y != minus_one && t != x - 1) y *= y, t <<= 1;
if (y != minus_one && t % 2 == 0) return false;
return true;
};
if (x < (u64(1) << 32)) {
for (u64 a: {2, 7, 61})
if (!ok(a)) return false;
} else {
for (u64 a: {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) {
if (!ok(a)) return false;
}
}
return true;
}
#line 2 "mod/primitive_root.hpp"
#line 2 "nt/factor.hpp"
#line 2 "random/base.hpp"
u64 RNG_64() {
static uint64_t x_
= uint64_t(chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count())
* 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 5 "nt/factor.hpp"
template <typename mint>
ll rho(ll n, ll c) {
assert(n > 1);
const mint cc(c);
auto f = [&](mint x) { return x * x + cc; };
mint x = 1, y = 2, z = 1, q = 1;
ll g = 1;
const ll m = 1LL << (__lg(n) / 5);
for (ll r = 1; g == 1; r <<= 1) {
x = y;
FOR(r) y = f(y);
for (ll k = 0; k < r && g == 1; k += m) {
z = y;
FOR(min(m, r - k)) y = f(y), q *= x - y;
g = gcd(q.val(), n);
}
}
if (g == n) do {
z = f(z);
g = gcd((x - z).val(), n);
} while (g == 1);
return g;
}
ll find_prime_factor(ll n) {
assert(n > 1);
if (primetest(n)) return n;
FOR(100) {
ll m = 0;
if (n < (1 << 30)) {
using mint = Mongomery_modint_32<20231025>;
mint::set_mod(n);
m = rho<mint>(n, RNG(0, n));
} else {
using mint = Mongomery_modint_64<20231025>;
mint::set_mod(n);
m = rho<mint>(n, RNG(0, n));
}
if (primetest(m)) return m;
n = m;
}
assert(0);
return -1;
}
// ソートしてくれる
vc<pair<ll, int>> factor(ll n) {
assert(n >= 1);
vc<pair<ll, int>> pf;
FOR(p, 2, 100) {
if (p * p > n) break;
if (n % p == 0) {
ll e = 0;
do { n /= p, e += 1; } while (n % p == 0);
pf.eb(p, e);
}
}
while (n > 1) {
ll p = find_prime_factor(n);
ll e = 0;
do { n /= p, e += 1; } while (n % p == 0);
pf.eb(p, e);
}
sort(all(pf));
return pf;
}
vc<pair<ll, int>> factor_by_lpf(ll n, vc<int>& lpf) {
vc<pair<ll, int>> res;
while (n > 1) {
int p = lpf[n];
int e = 0;
while (n % p == 0) {
n /= p;
++e;
}
res.eb(p, e);
}
return res;
}
#line 2 "mod/mod_pow.hpp"
#line 2 "mod/barrett.hpp"
// https://github.com/atcoder/ac-library/blob/master/atcoder/internal_math.hpp
struct Barrett {
u32 m;
u64 im;
explicit Barrett(u32 m = 1) : m(m), im(u64(-1) / m + 1) {}
u32 umod() const { return m; }
u32 modulo(u64 z) {
if (m == 1) return 0;
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
return (z - y + (z < y ? m : 0));
}
u64 floor(u64 z) {
if (m == 1) return z;
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
return (z < y ? x - 1 : x);
}
pair<u64, u32> divmod(u64 z) {
if (m == 1) return {z, 0};
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
if (z < y) return {x - 1, z - y + m};
return {x, z - y};
}
u32 mul(u32 a, u32 b) { return modulo(u64(a) * b); }
};
struct Barrett_64 {
u128 mod, mh, ml;
explicit Barrett_64(u64 mod = 1) : mod(mod) {
u128 m = u128(-1) / mod;
if (m * mod + mod == u128(0)) ++m;
mh = m >> 64;
ml = m & u64(-1);
}
u64 umod() const { return mod; }
u64 modulo(u128 x) {
u128 z = (x & u64(-1)) * ml;
z = (x & u64(-1)) * mh + (x >> 64) * ml + (z >> 64);
z = (x >> 64) * mh + (z >> 64);
x -= z * mod;
return x < mod ? x : x - mod;
}
u64 mul(u64 a, u64 b) { return modulo(u128(a) * b); }
};
#line 5 "mod/mod_pow.hpp"
u32 mod_pow(int a, ll n, int mod) {
assert(n >= 0);
a = ((a %= mod) < 0 ? a + mod : a);
if ((mod & 1) && (mod < (1 << 30))) {
using mint = Mongomery_modint_32<202311021>;
mint::set_mod(mod);
return mint(a).pow(n).val();
}
Barrett bt(mod);
int r = 1;
while (n) {
if (n & 1) r = bt.mul(r, a);
a = bt.mul(a, a), n >>= 1;
}
return r;
}
u64 mod_pow_64(ll a, ll n, u64 mod) {
assert(n >= 0);
a = ((a %= mod) < 0 ? a + mod : a);
if ((mod & 1) && (mod < (u64(1) << 62))) {
using mint = Mongomery_modint_64<202311021>;
mint::set_mod(mod);
return mint(a).pow(n).val();
}
Barrett_64 bt(mod);
ll r = 1;
while (n) {
if (n & 1) r = bt.mul(r, a);
a = bt.mul(a, a), n >>= 1;
}
return r;
}
#line 6 "mod/primitive_root.hpp"
// int
int primitive_root(int p) {
auto pf = factor(p - 1);
auto is_ok = [&](int g) -> bool {
for (auto&& [q, e]: pf)
if (mod_pow(g, (p - 1) / q, p) == 1) return false;
return true;
};
while (1) {
int x = RNG(1, p);
if (is_ok(x)) return x;
}
return -1;
}
ll primitive_root_64(ll p) {
auto pf = factor(p - 1);
auto is_ok = [&](ll g) -> bool {
for (auto&& [q, e]: pf)
if (mod_pow_64(g, (p - 1) / q, p) == 1) return false;
return true;
};
while (1) {
ll x = RNG(1, p);
if (is_ok(x)) return x;
}
return -1;
}
#line 2 "mod/mod_inv.hpp"
// long でも大丈夫
// (val * x - 1) が mod の倍数になるようにする
// 特に mod=0 なら x=0 が満たす
ll mod_inv(ll val, ll mod) {
if (mod == 0) return 0;
mod = abs(mod);
val %= mod;
if (val < 0) val += mod;
ll a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
if (u < 0) u += mod;
return u;
}
#line 2 "ds/hashmap.hpp"
// u64 -> Val
template <typename Val, int LOG = 20, bool KEEP_IDS = false>
struct HashMap {
static constexpr int N = (1 << LOG);
u64* key;
Val* val;
vc<int> IDS;
bitset<N> used;
const int shift;
const u64 r = 11995408973635179863ULL;
HashMap() : key(new u64[N]), val(new Val[N]), shift(64 - LOG) {}
u32 hash(u64 x) {
static const u64 FIXED_RANDOM
= std::chrono::steady_clock::now().time_since_epoch().count();
return (u64(x + FIXED_RANDOM) * r) >> shift;
}
int index(const u64& k) {
int i = 0;
for (i = hash(k); used[i] && key[i] != k; (i += 1) &= (N - 1)) {}
return i;
}
Val& operator[](const u64& k) {
int i = index(k);
if (!used[i]) {
used[i] = 1, key[i] = k, val[i] = Val{};
if constexpr (KEEP_IDS) IDS.eb(i);
}
return val[i];
}
Val get(const u64& k, Val default_value) {
int i = index(k);
if (!used[i]) return default_value;
return val[i];
}
bool count(const u64& k) {
int i = index(k);
return used[i] && key[i] == k;
}
void reset() {
static_assert(KEEP_IDS);
for (auto&& i: IDS) used[i] = 0;
IDS.clear();
}
// f(key, val)
template <typename F>
void enumerate_all(F f) {
static_assert(KEEP_IDS);
for (auto&& i: IDS) f(key[i], val[i]);
}
};
#line 5 "mod/mod_kth_root.hpp"
// mod は int
int mod_kth_root(ll k, ll a, int mod) {
static HashMap<int, 20, true> MP;
MP.reset();
assert(primetest(mod) && 0 <= a && a < mod);
if (k == 0) return (a == 1 ? 1 : -1);
if (a == 0) return 0;
if (mod == 2) return a;
k %= mod - 1;
Barrett bt(mod);
ll g = gcd(k, mod - 1);
if (mod_pow(a, (mod - 1) / g, mod) != 1) return -1;
ll c = mod_inv(k / g, (mod - 1) / g);
a = mod_pow(a, c, mod);
k = (k * c) % (mod - 1);
if (k == 0) return 1;
g = primitive_root(mod);
auto solve_pp = [&](ll p, int e, ll a) -> ll {
int f = 0;
ll pf = 1;
while ((mod - 1) % (pf * p) == 0) ++f, pf *= p;
ll m = (mod - 1) / pf;
/*
・位数 Qm の巡回群
・a の p^e 乗根をとりたい。持つことは分かっている
・a / x^{p^e} = b を維持する。まずは、b が p で割れる回数を増やしていく。
*/
ll x = 1, b = a, c = f - e; // b ^ {mp^c} = 1
int pc = 1;
FOR(c) pc *= p;
int pe = 1;
FOR(e) pe *= p;
// 必要ならば原始 p 乗根に関する離散対数問題のセットアップ
ll G = mod_pow(g, (mod - 1) / p, mod);
int M = 0;
MP.reset();
ll GM_inv = -1;
if (c) {
while (M * M < p) ++M;
ll Gpow = 1;
FOR(m, M) {
MP[Gpow] = m;
Gpow = bt.mul(Gpow, G);
}
GM_inv = mod_pow(Gpow, mod - 2, mod);
}
while (c) {
/*
b^{mp^c} = 1 が分かっている。(b/x^{p^e}})^{mp^{c-1}} = 1 にしたい。
x = g^{p^{f-c-e}*k} として探す。原始 p 乗根 B, G に対する B = G^k に帰着。
*/
ll B = mod_pow(b, m * pc / p, mod);
int k = [&](ll B) -> int {
FOR(m, M + 1) {
if (MP.count(B)) return m * M + MP[B];
B = bt.mul(B, GM_inv);
}
return -1;
}(B);
x = bt.mul(x, mod_pow(g, pf / pc / pe * k, mod));
ll exp = pf / pc * k % (mod - 1);
b = bt.mul(b, mod_pow(g, mod - 1 - exp, mod));
--c;
pc /= p;
}
int k = pe - mod_inv(m, pe);
k = (k * m + 1) / pe;
ll y = mod_pow(b, k, mod);
x = bt.mul(x, y);
return x;
};
auto pf = factor(k);
for (auto&& [p, e]: pf) a = solve_pp(p, e, a);
return a;
}
ll mod_kth_root_64(ll k, ll a, ll mod) {
static HashMap<ll, 20, true> MP;
MP.reset();
assert(primetest(mod) && 0 <= a && a < mod);
if (k == 0) return (a == 1 ? 1 : -1);
if (a == 0) return 0;
if (mod == 2) return a;
k %= mod - 1;
ll g = gcd(k, mod - 1);
if (mod_pow_64(a, (mod - 1) / g, mod) != 1) return -1;
ll c = mod_inv(k / g, (mod - 1) / g);
a = mod_pow_64(a, c, mod);
k = i128(k) * c % (mod - 1);
if (k == 0) return 1;
g = primitive_root_64(mod);
auto solve_pp = [&](ll p, ll e, ll a) -> ll {
ll f = 0;
ll pf = 1;
while (((mod - 1) / pf) % p == 0) ++f, pf *= p;
ll m = (mod - 1) / pf;
/*
・位数 Qm の巡回群
・a の p^e 乗根をとりたい。持つことは分かっている
・a / x^{p^e} = b を維持する。まずは、b が p で割れる回数を増やしていく。
*/
ll x = 1, b = a, c = f - e; // b ^ {mp^c} = 1
ll pc = 1;
FOR(c) pc *= p;
ll pe = 1;
FOR(e) pe *= p;
// 必要ならば原始 p 乗根に関する離散対数問題のセットアップ
ll G = mod_pow_64(g, (mod - 1) / p, mod);
ll M = 0;
ll GM_inv = -1;
if (c) {
while (M * M < p) ++M;
MP.reset();
ll Gpow = 1;
FOR(m, M) {
MP[Gpow] = m;
Gpow = i128(Gpow) * G % mod;
}
GM_inv = mod_pow_64(Gpow, mod - 2, mod);
}
while (c) {
/*
b^{mp^c} = 1 が分かっている。(b/x^{p^e}})^{mp^{c-1}} = 1 にしたい。
x = g^{p^{f-c-e}*k} として探す。原始 p 乗根 B, G に対する B = G^k に帰着。
*/
ll B = mod_pow_64(b, pc / p * m, mod);
ll k = [&](ll B) -> ll {
FOR(m, M + 1) {
if (MP.count(B)) return m * M + MP[B];
B = i128(B) * GM_inv % mod;
}
return -1;
}(B);
x = i128(x) * mod_pow_64(g, pf / pc / pe * k, mod) % mod;
ll exp = pf / pc * i128(k) % (mod - 1);
b = i128(b) * mod_pow_64(g, mod - 1 - exp, mod) % mod;
--c;
pc /= p;
}
ll k = pe - mod_inv(m, pe);
k = (i128(k) * m + 1) / pe;
ll y = mod_pow_64(b, k, mod);
x = i128(x) * y % mod;
return x;
};
auto pf = factor(k);
for (auto&& [p, e]: pf) a = solve_pp(p, e, a);
return a;
}