This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "mod/dynamic_modint_64.hpp"
#pragma once #include "mod/modint_common.hpp" #include "mod/barrett.hpp" // https://codeforces.com/contest/453/problem/D template <int id> struct Dynamic_Modint_64 { static constexpr bool is_modint = true; using mint = Dynamic_Modint_64; u64 val; static Barrett_64 bt; static u64 umod() { return bt.umod(); } static ll get_mod() { return (ll)(bt.umod()); } static void set_mod(ll m) { assert(1 <= m); bt = Barrett_64(m); } Dynamic_Modint_64() : val(0) {} Dynamic_Modint_64(u64 x) : val(bt.modulo(x)) {} Dynamic_Modint_64(u128 x) : val(bt.modulo(x)) {} Dynamic_Modint_64(int x) : val((x %= get_mod()) < 0 ? x + get_mod() : x) {} Dynamic_Modint_64(ll x) : val((x %= get_mod()) < 0 ? x + get_mod() : x) {} Dynamic_Modint_64(i128 x) : val((x %= get_mod()) < 0 ? x + get_mod() : x) {} mint& operator+=(const mint& rhs) { val = (val += rhs.val) < umod() ? val : val - umod(); return *this; } mint& operator-=(const mint& rhs) { val = (val += umod() - rhs.val) < umod() ? val : val - umod(); return *this; } mint& operator*=(const mint& rhs) { val = bt.mul(val, rhs.val); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inverse(); } mint operator-() const { return mint() - *this; } mint pow(ll n) const { assert(0 <= n); mint x = *this, r = u64(1); while (n) { if (n & 1) r *= x; x *= x, n >>= 1; } return r; } mint inverse() const { ll x = val, mod = get_mod(); ll a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } if (u < 0) u += mod; return u64(u); } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs.val == rhs.val; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs.val != rhs.val; } }; #ifdef FASTIO template <int id> void rd(Dynamic_Modint_64<id>& x) { fastio::rd(x.val); assert(0 <= x.val && x.val < Dynamic_Modint_64<id>::get_mod()); } template <int id> void wt(Dynamic_Modint_64<id> x) { fastio::wt(x.val); } #endif using dmint64 = Dynamic_Modint_64<-1>; template <int id> Barrett_64 Dynamic_Modint_64<id>::bt;
#line 2 "mod/dynamic_modint_64.hpp" #line 2 "mod/modint_common.hpp" struct has_mod_impl { template <class T> static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {}; template <typename mint> mint inv(int n) { static const int mod = mint::get_mod(); static vector<mint> dat = {0, 1}; assert(0 <= n); if (n >= mod) n %= mod; while (len(dat) <= n) { int k = len(dat); int q = (mod + k - 1) / k; dat.eb(dat[k * q - mod] * mint::raw(q)); } return dat[n]; } template <typename mint> mint fact(int n) { static const int mod = mint::get_mod(); assert(0 <= n && n < mod); static vector<mint> dat = {1, 1}; while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat))); return dat[n]; } template <typename mint> mint fact_inv(int n) { static vector<mint> dat = {1, 1}; if (n < 0) return mint(0); while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat))); return dat[n]; } template <class mint, class... Ts> mint fact_invs(Ts... xs) { return (mint(1) * ... * fact_inv<mint>(xs)); } template <typename mint, class Head, class... Tail> mint multinomial(Head &&head, Tail &&... tail) { return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...); } template <typename mint> mint C_dense(int n, int k) { assert(n >= 0); if (k < 0 || n < k) return 0; static vvc<mint> C; static int H = 0, W = 0; auto calc = [&](int i, int j) -> mint { if (i == 0) return (j == 0 ? mint(1) : mint(0)); return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0); }; if (W <= k) { FOR(i, H) { C[i].resize(k + 1); FOR(j, W, k + 1) { C[i][j] = calc(i, j); } } W = k + 1; } if (H <= n) { C.resize(n + 1); FOR(i, H, n + 1) { C[i].resize(W); FOR(j, W) { C[i][j] = calc(i, j); } } H = n + 1; } return C[n][k]; } template <typename mint, bool large = false, bool dense = false> mint C(ll n, ll k) { assert(n >= 0); if (k < 0 || n < k) return 0; if constexpr (dense) return C_dense<mint>(n, k); if constexpr (!large) return multinomial<mint>(n, k, n - k); k = min(k, n - k); mint x(1); FOR(i, k) x *= mint(n - i); return x * fact_inv<mint>(k); } template <typename mint, bool large = false> mint C_inv(ll n, ll k) { assert(n >= 0); assert(0 <= k && k <= n); if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k); return mint(1) / C<mint, 1>(n, k); } // [x^d](1-x)^{-n} template <typename mint, bool large = false, bool dense = false> mint C_negative(ll n, ll d) { assert(n >= 0); if (d < 0) return mint(0); if (n == 0) { return (d == 0 ? mint(1) : mint(0)); } return C<mint, large, dense>(n + d - 1, d); } #line 2 "mod/barrett.hpp" // https://github.com/atcoder/ac-library/blob/master/atcoder/internal_math.hpp struct Barrett { u32 m; u64 im; explicit Barrett(u32 m = 1) : m(m), im(u64(-1) / m + 1) {} u32 umod() const { return m; } u32 modulo(u64 z) { if (m == 1) return 0; u64 x = (u64)(((unsigned __int128)(z)*im) >> 64); u64 y = x * m; return (z - y + (z < y ? m : 0)); } u64 floor(u64 z) { if (m == 1) return z; u64 x = (u64)(((unsigned __int128)(z)*im) >> 64); u64 y = x * m; return (z < y ? x - 1 : x); } pair<u64, u32> divmod(u64 z) { if (m == 1) return {z, 0}; u64 x = (u64)(((unsigned __int128)(z)*im) >> 64); u64 y = x * m; if (z < y) return {x - 1, z - y + m}; return {x, z - y}; } u32 mul(u32 a, u32 b) { return modulo(u64(a) * b); } }; struct Barrett_64 { u128 mod, mh, ml; explicit Barrett_64(u64 mod = 1) : mod(mod) { u128 m = u128(-1) / mod; if (m * mod + mod == u128(0)) ++m; mh = m >> 64; ml = m & u64(-1); } u64 umod() const { return mod; } u64 modulo(u128 x) { u128 z = (x & u64(-1)) * ml; z = (x & u64(-1)) * mh + (x >> 64) * ml + (z >> 64); z = (x >> 64) * mh + (z >> 64); x -= z * mod; return x < mod ? x : x - mod; } u64 mul(u64 a, u64 b) { return modulo(u128(a) * b); } }; #line 5 "mod/dynamic_modint_64.hpp" // https://codeforces.com/contest/453/problem/D template <int id> struct Dynamic_Modint_64 { static constexpr bool is_modint = true; using mint = Dynamic_Modint_64; u64 val; static Barrett_64 bt; static u64 umod() { return bt.umod(); } static ll get_mod() { return (ll)(bt.umod()); } static void set_mod(ll m) { assert(1 <= m); bt = Barrett_64(m); } Dynamic_Modint_64() : val(0) {} Dynamic_Modint_64(u64 x) : val(bt.modulo(x)) {} Dynamic_Modint_64(u128 x) : val(bt.modulo(x)) {} Dynamic_Modint_64(int x) : val((x %= get_mod()) < 0 ? x + get_mod() : x) {} Dynamic_Modint_64(ll x) : val((x %= get_mod()) < 0 ? x + get_mod() : x) {} Dynamic_Modint_64(i128 x) : val((x %= get_mod()) < 0 ? x + get_mod() : x) {} mint& operator+=(const mint& rhs) { val = (val += rhs.val) < umod() ? val : val - umod(); return *this; } mint& operator-=(const mint& rhs) { val = (val += umod() - rhs.val) < umod() ? val : val - umod(); return *this; } mint& operator*=(const mint& rhs) { val = bt.mul(val, rhs.val); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inverse(); } mint operator-() const { return mint() - *this; } mint pow(ll n) const { assert(0 <= n); mint x = *this, r = u64(1); while (n) { if (n & 1) r *= x; x *= x, n >>= 1; } return r; } mint inverse() const { ll x = val, mod = get_mod(); ll a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } if (u < 0) u += mod; return u64(u); } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs.val == rhs.val; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs.val != rhs.val; } }; #ifdef FASTIO template <int id> void rd(Dynamic_Modint_64<id>& x) { fastio::rd(x.val); assert(0 <= x.val && x.val < Dynamic_Modint_64<id>::get_mod()); } template <int id> void wt(Dynamic_Modint_64<id> x) { fastio::wt(x.val); } #endif using dmint64 = Dynamic_Modint_64<-1>; template <int id> Barrett_64 Dynamic_Modint_64<id>::bt;