This documentation is automatically generated by online-judge-tools/verification-helper
#include "mod/binomial.hpp"
#include "mod/primitive_root.hpp"
#include "mod/mod_inv.hpp"
struct Binomial_PrimePower {
int p, e;
int pp;
int root;
int ord;
vc<int> exp;
vc<int> log_fact;
vc<int> power;
Barrett bt_p, bt_pp;
Binomial_PrimePower(int p, int e) : p(p), e(e), power(e + 1, 1) {
FOR(i, e) power[i + 1] = power[i] * p;
pp = power[e];
bt_p = Barrett(p), bt_pp = Barrett(pp);
vc<int> log;
if (p == 2) {
if (e <= 1) { return; }
root = 5;
ord = pp / 4;
exp.assign(ord, 1);
log.assign(pp, 0);
FOR(i, ord - 1) { exp[i + 1] = (exp[i] * root) & (pp - 1); }
FOR(i, ord) log[exp[i]] = log[pp - exp[i]] = i;
} else {
root = primitive_root(p);
ord = pp / p * (p - 1);
exp.assign(ord, 1);
log.assign(pp, 0);
FOR(i, ord - 1) { exp[i + 1] = bt_pp.mul(exp[i], root); }
FOR(i, ord) log[exp[i]] = i;
}
log_fact.assign(pp, 0);
FOR(i, 1, pp) {
log_fact[i] = log_fact[i - 1] + log[i];
if (log_fact[i] >= ord) log_fact[i] -= ord;
}
}
int C(ll n, ll i) {
assert(n >= 0);
if (i < 0 || i > n) return 0;
ll a = i, b = n - i;
if (pp == 2) { return ((a & b) == 0 ? 1 : 0); }
int log = 0, cnt_p = 0, sgn = 0;
if (e > 1) {
while (n && cnt_p < e) {
auto [n1, nr1] = bt_pp.divmod(n);
auto [a1, ar1] = bt_pp.divmod(a);
auto [b1, br1] = bt_pp.divmod(b);
log += log_fact[nr1] - log_fact[ar1] - log_fact[br1];
if (p > 2) {
sgn += (n1 & 1) + (a1 & 1) + (b1 & 1);
} else {
sgn += (((nr1 + 1) & 4) + ((ar1 + 1) & 4) + ((br1 + 1) & 4)) / 4;
}
n = bt_p.floor(n), a = bt_p.floor(a), b = bt_p.floor(b);
cnt_p += n - a - b;
}
} else {
while (n && cnt_p < e) {
auto [n1, nr1] = bt_pp.divmod(n);
auto [a1, ar1] = bt_pp.divmod(a);
auto [b1, br1] = bt_pp.divmod(b);
log += log_fact[nr1] - log_fact[ar1] - log_fact[br1];
if (p > 2) {
sgn += (n1 & 1) + (a1 & 1) + (b1 & 1);
} else {
sgn += ((nr1 + 1) >> 2 & 1) + ((ar1 + 1) >> 2 & 1)
+ ((br1 + 1) >> 2 & 1);
}
n = n1, a = a1, b = b1;
cnt_p += n - a - b;
}
}
if (cnt_p >= e) return 0;
log %= ord;
if (log < 0) log += ord;
int res = exp[log];
if (sgn & 1) res = pp - res;
return bt_pp.mul(power[cnt_p], res);
}
};
struct Binomial {
int mod;
vc<Binomial_PrimePower> BPP;
vc<int> crt_coef;
Barrett bt;
Binomial(int mod) : mod(mod), bt(mod) {
for (auto&& [p, e]: factor(mod)) {
int pp = 1;
FOR(e) pp *= p;
BPP.eb(Binomial_PrimePower(p, e));
int other = mod / pp;
crt_coef.eb(ll(other) * mod_inv(other, pp) % mod);
}
}
int C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || k > n) return 0;
int ANS = 0;
FOR(s, len(crt_coef)) {
ANS = bt.modulo(ANS + u64(BPP[s].C(n, k)) * crt_coef[s]);
}
return ANS;
}
};
#line 2 "mod/primitive_root.hpp"
#line 2 "nt/factor.hpp"
#line 2 "random/base.hpp"
u64 RNG_64() {
static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "mod/mongomery_modint.hpp"
// odd mod.
// x の代わりに rx を持つ
template <int id, typename U1, typename U2>
struct Mongomery_modint {
using mint = Mongomery_modint;
inline static U1 m, r, n2;
static constexpr int W = numeric_limits<U1>::digits;
static void set_mod(U1 mod) {
assert(mod & 1 && mod <= U1(1) << (W - 2));
m = mod, n2 = -U2(m) % m, r = m;
FOR(5) r *= 2 - m * r;
r = -r;
assert(r * m == U1(-1));
}
static U1 reduce(U2 b) { return (b + U2(U1(b) * r) * m) >> W; }
U1 x;
Mongomery_modint() : x(0) {}
Mongomery_modint(U1 x) : x(reduce(U2(x) * n2)){};
U1 val() const {
U1 y = reduce(x);
return y >= m ? y - m : y;
}
mint &operator+=(mint y) {
x = ((x += y.x) >= m ? x - m : x);
return *this;
}
mint &operator-=(mint y) {
x -= (x >= y.x ? y.x : y.x - m);
return *this;
}
mint &operator*=(mint y) {
x = reduce(U2(x) * y.x);
return *this;
}
mint operator+(mint y) const { return mint(*this) += y; }
mint operator-(mint y) const { return mint(*this) -= y; }
mint operator*(mint y) const { return mint(*this) *= y; }
bool operator==(mint y) const {
return (x >= m ? x - m : x) == (y.x >= m ? y.x - m : y.x);
}
bool operator!=(mint y) const { return not operator==(y); }
mint pow(ll n) const {
assert(n >= 0);
mint y = 1, z = *this;
for (; n; n >>= 1, z *= z)
if (n & 1) y *= z;
return y;
}
};
template <int id>
using Mongomery_modint_32 = Mongomery_modint<id, u32, u64>;
template <int id>
using Mongomery_modint_64 = Mongomery_modint<id, u64, u128>;
#line 3 "nt/primetest.hpp"
bool primetest(const u64 x) {
assert(x < u64(1) << 62);
if (x == 2 or x == 3 or x == 5 or x == 7) return true;
if (x % 2 == 0 or x % 3 == 0 or x % 5 == 0 or x % 7 == 0) return false;
if (x < 121) return x > 1;
const u64 d = (x - 1) >> lowbit(x - 1);
using mint = Mongomery_modint_64<202311020>;
mint::set_mod(x);
const mint one(u64(1)), minus_one(x - 1);
auto ok = [&](u64 a) -> bool {
auto y = mint(a).pow(d);
u64 t = d;
while (y != one && y != minus_one && t != x - 1) y *= y, t <<= 1;
if (y != minus_one && t % 2 == 0) return false;
return true;
};
if (x < (u64(1) << 32)) {
for (u64 a: {2, 7, 61})
if (!ok(a)) return false;
} else {
for (u64 a: {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) {
if (!ok(a)) return false;
}
}
return true;
}
#line 5 "nt/factor.hpp"
template <typename mint>
ll rho(ll n, ll c) {
assert(n > 1);
const mint cc(c);
auto f = [&](mint x) { return x * x + cc; };
mint x = 1, y = 2, z = 1, q = 1;
ll g = 1;
const ll m = 1LL << (__lg(n) / 5);
for (ll r = 1; g == 1; r <<= 1) {
x = y;
FOR(r) y = f(y);
for (ll k = 0; k < r && g == 1; k += m) {
z = y;
FOR(min(m, r - k)) y = f(y), q *= x - y;
g = gcd(q.val(), n);
}
}
if (g == n) do {
z = f(z);
g = gcd((x - z).val(), n);
} while (g == 1);
return g;
}
ll find_prime_factor(ll n) {
assert(n > 1);
if (primetest(n)) return n;
FOR(100) {
ll m = 0;
if (n < (1 << 30)) {
using mint = Mongomery_modint_32<20231025>;
mint::set_mod(n);
m = rho<mint>(n, RNG(0, n));
} else {
using mint = Mongomery_modint_64<20231025>;
mint::set_mod(n);
m = rho<mint>(n, RNG(0, n));
}
if (primetest(m)) return m;
n = m;
}
assert(0);
return -1;
}
// ソートしてくれる
vc<pair<ll, int>> factor(ll n) {
assert(n >= 1);
vc<pair<ll, int>> pf;
FOR(p, 2, 100) {
if (p * p > n) break;
if (n % p == 0) {
ll e = 0;
do { n /= p, e += 1; } while (n % p == 0);
pf.eb(p, e);
}
}
while (n > 1) {
ll p = find_prime_factor(n);
ll e = 0;
do { n /= p, e += 1; } while (n % p == 0);
pf.eb(p, e);
}
sort(all(pf));
return pf;
}
vc<pair<ll, int>> factor_by_lpf(ll n, vc<int>& lpf) {
vc<pair<ll, int>> res;
while (n > 1) {
int p = lpf[n];
int e = 0;
while (n % p == 0) {
n /= p;
++e;
}
res.eb(p, e);
}
return res;
}
#line 2 "mod/mod_pow.hpp"
#line 2 "mod/barrett.hpp"
// https://github.com/atcoder/ac-library/blob/master/atcoder/internal_math.hpp
struct Barrett {
u32 m;
u64 im;
explicit Barrett(u32 m = 1) : m(m), im(u64(-1) / m + 1) {}
u32 umod() const { return m; }
u32 modulo(u64 z) {
if (m == 1) return 0;
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
return (z - y + (z < y ? m : 0));
}
u64 floor(u64 z) {
if (m == 1) return z;
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
return (z < y ? x - 1 : x);
}
pair<u64, u32> divmod(u64 z) {
if (m == 1) return {z, 0};
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
if (z < y) return {x - 1, z - y + m};
return {x, z - y};
}
u32 mul(u32 a, u32 b) { return modulo(u64(a) * b); }
};
struct Barrett_64 {
u128 mod, mh, ml;
explicit Barrett_64(u64 mod = 1) : mod(mod) {
u128 m = u128(-1) / mod;
if (m * mod + mod == u128(0)) ++m;
mh = m >> 64;
ml = m & u64(-1);
}
u64 umod() const { return mod; }
u64 modulo(u128 x) {
u128 z = (x & u64(-1)) * ml;
z = (x & u64(-1)) * mh + (x >> 64) * ml + (z >> 64);
z = (x >> 64) * mh + (z >> 64);
x -= z * mod;
return x < mod ? x : x - mod;
}
u64 mul(u64 a, u64 b) { return modulo(u128(a) * b); }
};
#line 5 "mod/mod_pow.hpp"
u32 mod_pow(int a, ll n, int mod) {
assert(n >= 0);
if (mod == 1) return 0;
a = ((a %= mod) < 0 ? a + mod : a);
if ((mod & 1) && (mod < (1 << 30))) {
using mint = Mongomery_modint_32<202311021>;
mint::set_mod(mod);
return mint(a).pow(n).val();
}
Barrett bt(mod);
int r = 1;
while (n) {
if (n & 1) r = bt.mul(r, a);
a = bt.mul(a, a), n >>= 1;
}
return r;
}
u64 mod_pow_64(ll a, ll n, u64 mod) {
assert(n >= 0);
if (mod == 1) return 0;
a = ((a %= mod) < 0 ? a + mod : a);
if ((mod & 1) && (mod < (u64(1) << 62))) {
using mint = Mongomery_modint_64<202311021>;
mint::set_mod(mod);
return mint(a).pow(n).val();
}
Barrett_64 bt(mod);
ll r = 1;
while (n) {
if (n & 1) r = bt.mul(r, a);
a = bt.mul(a, a), n >>= 1;
}
return r;
}
#line 6 "mod/primitive_root.hpp"
// int
int primitive_root(int p) {
auto pf = factor(p - 1);
auto is_ok = [&](int g) -> bool {
for (auto&& [q, e]: pf)
if (mod_pow(g, (p - 1) / q, p) == 1) return false;
return true;
};
while (1) {
int x = RNG(1, p);
if (is_ok(x)) return x;
}
return -1;
}
ll primitive_root_64(ll p) {
auto pf = factor(p - 1);
auto is_ok = [&](ll g) -> bool {
for (auto&& [q, e]: pf)
if (mod_pow_64(g, (p - 1) / q, p) == 1) return false;
return true;
};
while (1) {
ll x = RNG(1, p);
if (is_ok(x)) return x;
}
return -1;
}
// https://codeforces.com/contest/1190/problem/F
ll primitive_root_prime_power_64(ll p, ll e) {
assert(p >= 3);
ll g = primitive_root_64(p);
ll q = p;
ll phi = p - 1;
FOR(e - 1) {
q *= p;
phi *= p;
if (mod_pow_64(g, phi / p, q) == 1) g += q / p;
}
return g;
}
#line 2 "mod/mod_inv.hpp"
// long でも大丈夫
// (val * x - 1) が mod の倍数になるようにする
// 特に mod=0 なら x=0 が満たす
ll mod_inv(ll val, ll mod) {
if (mod == 0) return 0;
mod = abs(mod);
val %= mod;
if (val < 0) val += mod;
ll a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
if (u < 0) u += mod;
return u;
}
#line 3 "mod/binomial.hpp"
struct Binomial_PrimePower {
int p, e;
int pp;
int root;
int ord;
vc<int> exp;
vc<int> log_fact;
vc<int> power;
Barrett bt_p, bt_pp;
Binomial_PrimePower(int p, int e) : p(p), e(e), power(e + 1, 1) {
FOR(i, e) power[i + 1] = power[i] * p;
pp = power[e];
bt_p = Barrett(p), bt_pp = Barrett(pp);
vc<int> log;
if (p == 2) {
if (e <= 1) { return; }
root = 5;
ord = pp / 4;
exp.assign(ord, 1);
log.assign(pp, 0);
FOR(i, ord - 1) { exp[i + 1] = (exp[i] * root) & (pp - 1); }
FOR(i, ord) log[exp[i]] = log[pp - exp[i]] = i;
} else {
root = primitive_root(p);
ord = pp / p * (p - 1);
exp.assign(ord, 1);
log.assign(pp, 0);
FOR(i, ord - 1) { exp[i + 1] = bt_pp.mul(exp[i], root); }
FOR(i, ord) log[exp[i]] = i;
}
log_fact.assign(pp, 0);
FOR(i, 1, pp) {
log_fact[i] = log_fact[i - 1] + log[i];
if (log_fact[i] >= ord) log_fact[i] -= ord;
}
}
int C(ll n, ll i) {
assert(n >= 0);
if (i < 0 || i > n) return 0;
ll a = i, b = n - i;
if (pp == 2) { return ((a & b) == 0 ? 1 : 0); }
int log = 0, cnt_p = 0, sgn = 0;
if (e > 1) {
while (n && cnt_p < e) {
auto [n1, nr1] = bt_pp.divmod(n);
auto [a1, ar1] = bt_pp.divmod(a);
auto [b1, br1] = bt_pp.divmod(b);
log += log_fact[nr1] - log_fact[ar1] - log_fact[br1];
if (p > 2) {
sgn += (n1 & 1) + (a1 & 1) + (b1 & 1);
} else {
sgn += (((nr1 + 1) & 4) + ((ar1 + 1) & 4) + ((br1 + 1) & 4)) / 4;
}
n = bt_p.floor(n), a = bt_p.floor(a), b = bt_p.floor(b);
cnt_p += n - a - b;
}
} else {
while (n && cnt_p < e) {
auto [n1, nr1] = bt_pp.divmod(n);
auto [a1, ar1] = bt_pp.divmod(a);
auto [b1, br1] = bt_pp.divmod(b);
log += log_fact[nr1] - log_fact[ar1] - log_fact[br1];
if (p > 2) {
sgn += (n1 & 1) + (a1 & 1) + (b1 & 1);
} else {
sgn += ((nr1 + 1) >> 2 & 1) + ((ar1 + 1) >> 2 & 1)
+ ((br1 + 1) >> 2 & 1);
}
n = n1, a = a1, b = b1;
cnt_p += n - a - b;
}
}
if (cnt_p >= e) return 0;
log %= ord;
if (log < 0) log += ord;
int res = exp[log];
if (sgn & 1) res = pp - res;
return bt_pp.mul(power[cnt_p], res);
}
};
struct Binomial {
int mod;
vc<Binomial_PrimePower> BPP;
vc<int> crt_coef;
Barrett bt;
Binomial(int mod) : mod(mod), bt(mod) {
for (auto&& [p, e]: factor(mod)) {
int pp = 1;
FOR(e) pp *= p;
BPP.eb(Binomial_PrimePower(p, e));
int other = mod / pp;
crt_coef.eb(ll(other) * mod_inv(other, pp) % mod);
}
}
int C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || k > n) return 0;
int ANS = 0;
FOR(s, len(crt_coef)) {
ANS = bt.modulo(ANS + u64(BPP[s].C(n, k)) * crt_coef[s]);
}
return ANS;
}
};