This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "linalg/matrix_lowrank_update.hpp"
#include "linalg/matrix_inv.hpp" #include "linalg/matrix_rank.hpp" // https://en.wikipedia.org/wiki/Woodbury_matrix_identity template <typename T> struct Lowrank_Update { int n; vvc<T> A, IA; Lowrank_Update() {} Lowrank_Update(vvc<T> A) : A(A) { n = len(A); T det; tie(det, IA) = matrix_inv(A); assert(det != T(0)); } // A + UV が可逆なら足して true, そうでないなら何もせず false. bool update(vvc<T> &U, vvc<T> &V, bool update_A) { int r = len(V); assert(len(U) == n && len(U[0]) == r); assert(len(V) == r && len(V[0]) == n); vc<T> X(n), Y(n); FOR(k, r) { FOR(i, n) X[i] = U[i][k], Y[i] = V[k][i]; rank_one_update(X, Y, update_A); } } // A + c U transepose(V) が可逆なら足して true, そうでないなら何もせず false. // O(n^2) bool rank_one_update(T c, vc<T> &U, vc<T> &V, bool update_A) { vc<int> I, J; FOR(i, n) if (U[i] != T(0)) I.eb(i); FOR(i, n) if (V[i] != T(0)) J.eb(i); T x = 0; for (auto &j: J) { for (auto &i: I) { x += V[j] * IA[j][i] * U[i]; } } x = T(1) + c * x; if (x == T(0)) return false; if (update_A) { for (auto &i: I) { T t = c * U[i]; for (auto &j: J) { A[i][j] += t * V[j]; } } } x = c / x; vc<T> L(n), R(n); for (auto &i: I) { T u = U[i] * x; FOR(j, n) L[j] += IA[j][i] * u; } for (auto &j: J) { FOR(i, n) R[i] += V[j] * IA[j][i]; } FOR(i, n) FOR(j, n) IA[i][j] -= L[i] * R[j]; return true; } }; // lowrank update / rank query template <typename mint> struct Matrix_Rank_Lowrank_Update { int n; bool is_prepared; Lowrank_Update<mint> X; vc<pair<vc<mint>, vc<mint>>> dat; Matrix_Rank_Lowrank_Update(int n) : n(n) { vv(mint, A, n, n, mint(0)); build(A, 0); } Matrix_Rank_Lowrank_Update(vvc<mint> &A) : n(len(A)) { build(A); } void build(vvc<mint> A, int r = -1) { if (r == -1) r = matrix_rank(A); FOR(n - r) { vc<mint> x(n), y(n); FOR(i, n) x[i] = RNG(0, mint::get_mod()); FOR(i, n) y[i] = RNG(0, mint::get_mod()); dat.eb(x, y); FOR(i, n) FOR(j, n) A[i][j] += x[i] * y[j]; } X = Lowrank_Update(A); is_prepared = 1; } int rank() { while (!is_prepared && !dat.empty()) { auto [x, y] = dat.back(); if (!X.rank_one_update(-1, x, y, false)) break; POP(dat); } is_prepared = 1; return n - len(dat); } void rank_one_update(mint c, vc<mint> &U, vc<mint> &V) { is_prepared = 0; while (!X.rank_one_update(c, U, V, false)) { vc<mint> x(n), y(n); FOR(i, n) x[i] = RNG(0, mint::get_mod()); FOR(i, n) y[i] = RNG(0, mint::get_mod()); dat.eb(x, y); X.rank_one_update(1, x, y, false); } } };
#line 2 "linalg/matrix_inv.hpp" // (det, invA) をかえす template <typename T> pair<T, vc<vc<T>>> matrix_inv(vc<vc<T>> A) { T det = 1; int N = len(A); vv(T, B, N, N); FOR(n, N) B[n][n] = 1; FOR(i, N) { FOR(k, i, N) if (A[k][i] != 0) { if (k != i) { swap(A[i], A[k]), swap(B[i], B[k]); det = -det; } break; } if (A[i][i] == 0) return {T(0), {}}; T c = T(1) / A[i][i]; det *= A[i][i]; FOR(j, i, N) A[i][j] *= c; FOR(j, N) B[i][j] *= c; FOR(k, N) if (i != k) { T c = A[k][i]; FOR(j, i, N) A[k][j] -= A[i][j] * c; FOR(j, N) B[k][j] -= B[i][j] * c; } } return {det, B}; } #line 1 "linalg/matrix_rank.hpp" template <typename T> int matrix_rank(vc<vc<T>> a, int n = -1, int m = -1) { if (n == 0) return 0; if (n == -1) { n = len(a), m = len(a[0]); } assert(n == len(a) && m == len(a[0])); int rk = 0; FOR(j, m) { if (rk == n) break; if (a[rk][j] == 0) { FOR(i, rk + 1, n) if (a[i][j] != T(0)) { swap(a[rk], a[i]); break; } } if (a[rk][j] == 0) continue; T c = T(1) / a[rk][j]; FOR(k, j, m) a[rk][k] *= c; FOR(i, rk + 1, n) { T c = a[i][j]; FOR3(k, j, m) { a[i][k] -= a[rk][k] * c; } } ++rk; } return rk; } #line 3 "linalg/matrix_lowrank_update.hpp" // https://en.wikipedia.org/wiki/Woodbury_matrix_identity template <typename T> struct Lowrank_Update { int n; vvc<T> A, IA; Lowrank_Update() {} Lowrank_Update(vvc<T> A) : A(A) { n = len(A); T det; tie(det, IA) = matrix_inv(A); assert(det != T(0)); } // A + UV が可逆なら足して true, そうでないなら何もせず false. bool update(vvc<T> &U, vvc<T> &V, bool update_A) { int r = len(V); assert(len(U) == n && len(U[0]) == r); assert(len(V) == r && len(V[0]) == n); vc<T> X(n), Y(n); FOR(k, r) { FOR(i, n) X[i] = U[i][k], Y[i] = V[k][i]; rank_one_update(X, Y, update_A); } } // A + c U transepose(V) が可逆なら足して true, そうでないなら何もせず false. // O(n^2) bool rank_one_update(T c, vc<T> &U, vc<T> &V, bool update_A) { vc<int> I, J; FOR(i, n) if (U[i] != T(0)) I.eb(i); FOR(i, n) if (V[i] != T(0)) J.eb(i); T x = 0; for (auto &j: J) { for (auto &i: I) { x += V[j] * IA[j][i] * U[i]; } } x = T(1) + c * x; if (x == T(0)) return false; if (update_A) { for (auto &i: I) { T t = c * U[i]; for (auto &j: J) { A[i][j] += t * V[j]; } } } x = c / x; vc<T> L(n), R(n); for (auto &i: I) { T u = U[i] * x; FOR(j, n) L[j] += IA[j][i] * u; } for (auto &j: J) { FOR(i, n) R[i] += V[j] * IA[j][i]; } FOR(i, n) FOR(j, n) IA[i][j] -= L[i] * R[j]; return true; } }; // lowrank update / rank query template <typename mint> struct Matrix_Rank_Lowrank_Update { int n; bool is_prepared; Lowrank_Update<mint> X; vc<pair<vc<mint>, vc<mint>>> dat; Matrix_Rank_Lowrank_Update(int n) : n(n) { vv(mint, A, n, n, mint(0)); build(A, 0); } Matrix_Rank_Lowrank_Update(vvc<mint> &A) : n(len(A)) { build(A); } void build(vvc<mint> A, int r = -1) { if (r == -1) r = matrix_rank(A); FOR(n - r) { vc<mint> x(n), y(n); FOR(i, n) x[i] = RNG(0, mint::get_mod()); FOR(i, n) y[i] = RNG(0, mint::get_mod()); dat.eb(x, y); FOR(i, n) FOR(j, n) A[i][j] += x[i] * y[j]; } X = Lowrank_Update(A); is_prepared = 1; } int rank() { while (!is_prepared && !dat.empty()) { auto [x, y] = dat.back(); if (!X.rank_one_update(-1, x, y, false)) break; POP(dat); } is_prepared = 1; return n - len(dat); } void rank_one_update(mint c, vc<mint> &U, vc<mint> &V) { is_prepared = 0; while (!X.rank_one_update(c, U, V, false)) { vc<mint> x(n), y(n); FOR(i, n) x[i] = RNG(0, mint::get_mod()); FOR(i, n) y[i] = RNG(0, mint::get_mod()); dat.eb(x, y); X.rank_one_update(1, x, y, false); } } };