This documentation is automatically generated by online-judge-tools/verification-helper
#include "linalg/ecottea_matrix_dp.hpp"
#include "mod/modint.hpp"
#include "string/split.hpp"
// https://maspypy.com/ecottea_dp_estimate_method
// https://atcoder.jp/contests/agc022/tasks/agc022_e
// https://atcoder.jp/contests/toyota2023spring-final/tasks/toyota2023spring_final_f
template <typename mint, int d>
struct ecottea_matrix_dp {
using MAT = array<array<mint, d>, d>;
string alphabet;
map<char, MAT> matrix;
array<mint, d> X;
int rank;
// naive(n): map<string,mint>
template <typename F>
void build(string alphabet_, F naive, int max_append = -1) {
alphabet = alphabet_;
vc<string> lst;
if (max_append == -1) max_append = d - 1;
lst.eb("");
for (int p = 0; p < len(lst); ++p) {
string S = lst[p];
if (max_append < len(S)) break;
for (auto& a : alphabet) lst.eb(S + a);
}
int n = len(lst);
auto get = [&](string S) -> vc<mint> {
vc<mint> ANS(n);
FOR(j, n) ANS[j] = naive(lst[j] + S);
return ANS;
};
vv(mint, mat, d, n);
vc<string> basis;
vc<int> pivot(d, infty<int>);
vv(mint, way, d, d);
deque<string> que;
que.eb("");
auto reduce = [&](vc<mint>& A) -> vc<mint> {
vc<mint> cf(d);
FOR(i, len(basis)) {
mint x = A[pivot[i]];
FOR(j, pivot[i], n) { A[j] -= x * mat[i][j]; }
FOR(j, len(basis)) { cf[j] -= x * way[i][j]; }
}
return cf;
};
while (len(que)) {
int p = len(basis);
string S = POP(que);
vc<mint> row = get(S);
vc<mint> cf = reduce(row);
int k = n;
FOR_R(j, n) if (row[j] != 0) k = j;
if (k == n) continue;
if (p == d) {
print("dim>d");
assert(0);
}
cf[p] += 1;
mint c = mint(1) / row[k];
FOR(j, n) row[j] *= c;
FOR(j, p + 1) cf[j] *= c;
basis.eb(S);
pivot[p] = k, mat[p] = row, way[p] = cf;
++p;
auto I = argsort(pivot);
way = rearrange(way, I);
mat = rearrange(mat, I);
pivot = rearrange(pivot, I);
for (auto& ch : alphabet) {
que.eb(ch + S);
}
}
rank = len(basis);
for (auto& ch : alphabet) {
MAT ans{};
FOR(i, len(basis)) {
vc<mint> row = get(ch + basis[i]);
vc<mint> cf = reduce(row);
FOR(j, n) assert(row[j] == 0);
FOR(j, len(cf)) ans[i][j] = -cf[j];
}
matrix[ch] = ans;
}
FOR(i, len(basis)) X[i] = naive(basis[i]);
return;
}
string to_string(mint x) {
int a = x.val;
int b = a - (mint::get_mod());
return ::to_string(abs(a) <= abs(b) ? a : b);
}
string to_string() {
string out;
out += alphabet + ".";
FOR(i, d) out += to_string(X[i].val) + ".";
for (auto& ch : alphabet) {
FOR(i, d) FOR(j, d) { out += to_string(matrix[ch][i][j].val) + "."; }
}
out.pop_back();
return out;
}
void build_from_string(string S) {
auto dat = split(S, '.');
alphabet = dat[0];
int p = 1;
FOR(i, d) X[i] = stoi(dat[p++]);
for (auto& ch : alphabet) {
FOR(i, d) FOR(j, d) { matrix[ch][i][j] = stoi(dat[p++]); }
}
}
// ? は全部の重ね合わせとして
mint solve(string S) {
// 行ベクトルに行列をかけていって第0成分をとる
MAT ques{};
for (auto& [ch, A] : matrix) {
FOR(i, d) FOR(j, d) ques[i][j] += A[i][j];
}
matrix['?'] = ques;
array<mint, d> dp = X;
for (auto& ch : S) {
array<mint, d> newdp{};
assert(matrix.count(ch));
MAT& mat = matrix[ch];
FOR(i, d) FOR(j, d) newdp[i] += mat[i][j] * dp[j];
swap(dp, newdp);
}
return dp[0];
}
};
#line 2 "mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint::raw(q));
}
return dat[n];
}
template <>
double inv<double>(int n) {
assert(n != 0);
return 1.0 / n;
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n && n < mod);
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static vector<mint> dat = {1, 1};
if (n < 0) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&...tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) {
return (d == 0 ? mint(1) : mint(0));
}
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "mod/modint.hpp"
template <int mod>
struct modint {
static constexpr u32 umod = u32(mod);
static_assert(umod < u32(1) << 31);
u32 val;
static modint raw(u32 v) {
modint x;
x.val = v;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(u32 x) : val(x % umod) {}
constexpr modint(u64 x) : val(x % umod) {}
constexpr modint(u128 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = u64(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
if (n < 0) return inverse().pow(-n);
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 120586241) return {20, 74066978};
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 998244353) return {23, 31};
if (mod == 1004535809) return {21, 582313106};
if (mod == 1012924417) return {21, 368093570};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
fastio::rd(x.val);
x.val %= mod;
// assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
fastio::wt(x.val);
}
#endif
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 1 "string/split.hpp"
vc<string> split(string S, char sep = ',') {
vc<string> res = {""};
for (auto&& s: S) {
if (s == sep)
res.eb("");
else
res.back() += s;
}
return res;
}
vc<string> split(string S, string seps = " ,") {
vc<string> res = {""};
for (auto&& s: S) {
if (count(all(seps), s))
res.eb("");
else
res.back() += s;
}
return res;
}
#line 3 "linalg/ecottea_matrix_dp.hpp"
// https://maspypy.com/ecottea_dp_estimate_method
// https://atcoder.jp/contests/agc022/tasks/agc022_e
// https://atcoder.jp/contests/toyota2023spring-final/tasks/toyota2023spring_final_f
template <typename mint, int d>
struct ecottea_matrix_dp {
using MAT = array<array<mint, d>, d>;
string alphabet;
map<char, MAT> matrix;
array<mint, d> X;
int rank;
// naive(n): map<string,mint>
template <typename F>
void build(string alphabet_, F naive, int max_append = -1) {
alphabet = alphabet_;
vc<string> lst;
if (max_append == -1) max_append = d - 1;
lst.eb("");
for (int p = 0; p < len(lst); ++p) {
string S = lst[p];
if (max_append < len(S)) break;
for (auto& a : alphabet) lst.eb(S + a);
}
int n = len(lst);
auto get = [&](string S) -> vc<mint> {
vc<mint> ANS(n);
FOR(j, n) ANS[j] = naive(lst[j] + S);
return ANS;
};
vv(mint, mat, d, n);
vc<string> basis;
vc<int> pivot(d, infty<int>);
vv(mint, way, d, d);
deque<string> que;
que.eb("");
auto reduce = [&](vc<mint>& A) -> vc<mint> {
vc<mint> cf(d);
FOR(i, len(basis)) {
mint x = A[pivot[i]];
FOR(j, pivot[i], n) { A[j] -= x * mat[i][j]; }
FOR(j, len(basis)) { cf[j] -= x * way[i][j]; }
}
return cf;
};
while (len(que)) {
int p = len(basis);
string S = POP(que);
vc<mint> row = get(S);
vc<mint> cf = reduce(row);
int k = n;
FOR_R(j, n) if (row[j] != 0) k = j;
if (k == n) continue;
if (p == d) {
print("dim>d");
assert(0);
}
cf[p] += 1;
mint c = mint(1) / row[k];
FOR(j, n) row[j] *= c;
FOR(j, p + 1) cf[j] *= c;
basis.eb(S);
pivot[p] = k, mat[p] = row, way[p] = cf;
++p;
auto I = argsort(pivot);
way = rearrange(way, I);
mat = rearrange(mat, I);
pivot = rearrange(pivot, I);
for (auto& ch : alphabet) {
que.eb(ch + S);
}
}
rank = len(basis);
for (auto& ch : alphabet) {
MAT ans{};
FOR(i, len(basis)) {
vc<mint> row = get(ch + basis[i]);
vc<mint> cf = reduce(row);
FOR(j, n) assert(row[j] == 0);
FOR(j, len(cf)) ans[i][j] = -cf[j];
}
matrix[ch] = ans;
}
FOR(i, len(basis)) X[i] = naive(basis[i]);
return;
}
string to_string(mint x) {
int a = x.val;
int b = a - (mint::get_mod());
return ::to_string(abs(a) <= abs(b) ? a : b);
}
string to_string() {
string out;
out += alphabet + ".";
FOR(i, d) out += to_string(X[i].val) + ".";
for (auto& ch : alphabet) {
FOR(i, d) FOR(j, d) { out += to_string(matrix[ch][i][j].val) + "."; }
}
out.pop_back();
return out;
}
void build_from_string(string S) {
auto dat = split(S, '.');
alphabet = dat[0];
int p = 1;
FOR(i, d) X[i] = stoi(dat[p++]);
for (auto& ch : alphabet) {
FOR(i, d) FOR(j, d) { matrix[ch][i][j] = stoi(dat[p++]); }
}
}
// ? は全部の重ね合わせとして
mint solve(string S) {
// 行ベクトルに行列をかけていって第0成分をとる
MAT ques{};
for (auto& [ch, A] : matrix) {
FOR(i, d) FOR(j, d) ques[i][j] += A[i][j];
}
matrix['?'] = ques;
array<mint, d> dp = X;
for (auto& ch : S) {
array<mint, d> newdp{};
assert(matrix.count(ch));
MAT& mat = matrix[ch];
FOR(i, d) FOR(j, d) newdp[i] += mat[i][j] * dp[j];
swap(dp, newdp);
}
return dp[0];
}
};