This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "graph/shortest_path/nonzero_group_product_shortest_path.hpp"
#include "graph/base.hpp" #include "graph/shortest_path/dijkstra.hpp" // given: group-labeled undirected graph G, and s. // return: shortest path length from s to v, for each v. // remark: path is not a walk. directed case is NP hard. // https://arxiv.org/abs/1906.04062 template <typename WT, typename Monoid, typename GT> vc<WT> nonzero_group_product_shortest_path( GT& G, vc<typename Monoid::value_type> edge_label, int s) { static_assert(!GT::is_directed); const int N = G.N, M = G.M; using X = typename Monoid::value_type; auto get = [&](int eid, int frm) -> X { auto& e = G.edges[eid]; X x = edge_label[e.id]; return (e.frm == frm ? x : Monoid::inverse(x)); }; // shortest path tree vc<WT> dist(N, infty<WT>); vc<X> phi(N, Monoid::unit()); vc<int> par(N, -1); vc<int> depth(N); dist[s] = 0; pqg<pair<WT, int>> que; que.emplace(0, s); while (len(que)) { auto [dv, v] = POP(que); if (dv != dist[v]) continue; for (auto& e: G[v]) { if (chmin(dist[e.to], dv + e.cost)) { phi[e.to] = Monoid::op(phi[v], get(e.id, v)); que.emplace(dist[e.to], e.to); par[e.to] = v, depth[e.to] = depth[v] + 1; } } } vc<bool> cons(M); FOR(i, M) { int a = G.edges[i].frm, b = G.edges[i].to; X x = Monoid::op(phi[a], edge_label[i]); cons[i] = (x == phi[b]); } vc<WT> h(M, infty<WT>); vc<WT> q(N, infty<WT>); for (auto& e: G.edges) { if (dist[e.frm] == infty<WT>) continue; if (!cons[e.id] && chmin(h[e.id], dist[e.frm] + dist[e.to] + e.cost)) { que.emplace(h[e.id], e.id); } } vc<int> root(N); FOR(v, N) root[v] = v; auto get_root = [&](int v) -> int { while (root[v] != v) { v = root[v] = root[root[v]]; } return v; }; while (len(que)) { auto [x, eid] = POP(que); if (x != h[eid]) continue; int a = G.edges[eid].frm, b = G.edges[eid].to; a = get_root(a), b = get_root(b); vc<int> B; while (a != b) { if (depth[a] < depth[b]) swap(a, b); B.eb(a), a = get_root(par[a]); } for (auto& w: B) { root[w] = a, q[w] = x - dist[w]; for (auto& e: G[w]) { if (cons[e.id] && chmin(h[e.id], q[w] + dist[e.to] + e.cost)) { que.emplace(h[e.id], e.id); } } } } vc<WT> ANS(N, infty<WT>); FOR(v, N) ANS[v] = (phi[v] == Monoid::unit() ? q[v] : dist[v]); return ANS; }
#line 1 "graph/shortest_path/nonzero_group_product_shortest_path.hpp" #line 2 "ds/hashmap.hpp" // u64 -> Val template <typename Val> struct HashMap { // n は入れたいものの個数で ok HashMap(u32 n = 0) { build(n); } void build(u32 n) { u32 k = 8; while (k < n * 2) k *= 2; cap = k / 2, mask = k - 1; key.resize(k), val.resize(k), used.assign(k, 0); } // size を保ったまま. size=0 にするときは build すること. void clear() { used.assign(len(used), 0); cap = (mask + 1) / 2; } int size() { return len(used) / 2 - cap; } int index(const u64& k) { int i = 0; for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {} return i; } Val& operator[](const u64& k) { if (cap == 0) extend(); int i = index(k); if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; } return val[i]; } Val get(const u64& k, Val default_value) { int i = index(k); return (used[i] ? val[i] : default_value); } bool count(const u64& k) { int i = index(k); return used[i] && key[i] == k; } // f(key, val) template <typename F> void enumerate_all(F f) { FOR(i, len(used)) if (used[i]) f(key[i], val[i]); } private: u32 cap, mask; vc<u64> key; vc<Val> val; vc<bool> used; u64 hash(u64 x) { static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count(); x += FIXED_RANDOM; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return (x ^ (x >> 31)) & mask; } void extend() { vc<pair<u64, Val>> dat; dat.reserve(len(used) / 2 - cap); FOR(i, len(used)) { if (used[i]) dat.eb(key[i], val[i]); } build(2 * len(dat)); for (auto& [a, b]: dat) (*this)[a] = b; } }; #line 3 "graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { static constexpr bool is_directed = directed; int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void build(int n) { N = n, M = 0; prepared = 0; edges.clear(); indptr.clear(); csr_edges.clear(); vc_deg.clear(); vc_indeg.clear(); vc_outdeg.clear(); } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } #ifdef FASTIO // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } #endif void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } #ifdef FASTIO void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } #endif vc<int> new_idx; vc<bool> used_e; // G における頂点 V[i] が、新しいグラフで i になるようにする // {G, es} // sum(deg(v)) の計算量になっていて、 // 新しいグラフの n+m より大きい可能性があるので注意 Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) { if (len(new_idx) != N) new_idx.assign(N, -1); int n = len(V); FOR(i, n) new_idx[V[i]] = i; Graph<T, directed> G(n); vc<int> history; FOR(i, n) { for (auto&& e: (*this)[V[i]]) { if (len(used_e) <= e.id) used_e.resize(e.id + 1); if (used_e[e.id]) continue; int a = e.frm, b = e.to; if (new_idx[a] != -1 && new_idx[b] != -1) { history.eb(e.id); used_e[e.id] = 1; int eid = (keep_eid ? e.id : -1); G.add(new_idx[a], new_idx[b], e.cost, eid); } } } FOR(i, n) new_idx[V[i]] = -1; for (auto&& eid: history) used_e[eid] = 0; G.build(); return G; } Graph<T, true> to_directed_tree(int root = -1) { if (root == -1) root = 0; assert(!is_directed && prepared && M == N - 1); Graph<T, true> G1(N); vc<int> par(N, -1); auto dfs = [&](auto& dfs, int v) -> void { for (auto& e: (*this)[v]) { if (e.to == par[v]) continue; par[e.to] = v, dfs(dfs, e.to); } }; dfs(dfs, root); for (auto& e: edges) { int a = e.frm, b = e.to; if (par[a] == b) swap(a, b); assert(par[b] == a); G1.add(a, b, e.cost); } G1.build(); return G1; } HashMap<int> MP_FOR_EID; int get_eid(u64 a, u64 b) { if (len(MP_FOR_EID) == 0) { MP_FOR_EID.build(N - 1); for (auto& e: edges) { u64 a = e.frm, b = e.to; u64 k = to_eid_key(a, b); MP_FOR_EID[k] = e.id; } } return MP_FOR_EID.get(to_eid_key(a, b), -1); } u64 to_eid_key(u64 a, u64 b) { if (!directed && a > b) swap(a, b); return N * a + b; } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 3 "graph/shortest_path/dijkstra.hpp" template <typename T, typename GT> pair<vc<T>, vc<int>> dijkstra_dense(GT& G, int s) { const int N = G.N; vc<T> dist(N, infty<T>); vc<int> par(N, -1); vc<bool> done(N); dist[s] = 0; while (1) { int v = -1; T mi = infty<T>; FOR(i, N) { if (!done[i] && chmin(mi, dist[i])) v = i; } if (v == -1) break; done[v] = 1; for (auto&& e: G[v]) { if (chmin(dist[e.to], dist[v] + e.cost)) par[e.to] = v; } } return {dist, par}; } template <typename T, typename GT, bool DENSE = false> pair<vc<T>, vc<int>> dijkstra(GT& G, int v) { if (DENSE) return dijkstra_dense<T>(G, v); auto N = G.N; vector<T> dist(N, infty<T>); vector<int> par(N, -1); using P = pair<T, int>; priority_queue<P, vector<P>, greater<P>> que; dist[v] = 0; que.emplace(0, v); while (!que.empty()) { auto [dv, v] = que.top(); que.pop(); if (dv > dist[v]) continue; for (auto&& e: G[v]) { if (chmin(dist[e.to], dist[e.frm] + e.cost)) { par[e.to] = e.frm; que.emplace(dist[e.to], e.to); } } } return {dist, par}; } // 多点スタート。[dist, par, root] template <typename T, typename GT> tuple<vc<T>, vc<int>, vc<int>> dijkstra(GT& G, vc<int> vs) { assert(G.is_prepared()); int N = G.N; vc<T> dist(N, infty<T>); vc<int> par(N, -1); vc<int> root(N, -1); using P = pair<T, int>; priority_queue<P, vector<P>, greater<P>> que; for (auto&& v: vs) { dist[v] = 0; root[v] = v; que.emplace(T(0), v); } while (!que.empty()) { auto [dv, v] = que.top(); que.pop(); if (dv > dist[v]) continue; for (auto&& e: G[v]) { if (chmin(dist[e.to], dist[e.frm] + e.cost)) { root[e.to] = root[e.frm]; par[e.to] = e.frm; que.push(mp(dist[e.to], e.to)); } } } return {dist, par, root}; } #line 4 "graph/shortest_path/nonzero_group_product_shortest_path.hpp" // given: group-labeled undirected graph G, and s. // return: shortest path length from s to v, for each v. // remark: path is not a walk. directed case is NP hard. // https://arxiv.org/abs/1906.04062 template <typename WT, typename Monoid, typename GT> vc<WT> nonzero_group_product_shortest_path( GT& G, vc<typename Monoid::value_type> edge_label, int s) { static_assert(!GT::is_directed); const int N = G.N, M = G.M; using X = typename Monoid::value_type; auto get = [&](int eid, int frm) -> X { auto& e = G.edges[eid]; X x = edge_label[e.id]; return (e.frm == frm ? x : Monoid::inverse(x)); }; // shortest path tree vc<WT> dist(N, infty<WT>); vc<X> phi(N, Monoid::unit()); vc<int> par(N, -1); vc<int> depth(N); dist[s] = 0; pqg<pair<WT, int>> que; que.emplace(0, s); while (len(que)) { auto [dv, v] = POP(que); if (dv != dist[v]) continue; for (auto& e: G[v]) { if (chmin(dist[e.to], dv + e.cost)) { phi[e.to] = Monoid::op(phi[v], get(e.id, v)); que.emplace(dist[e.to], e.to); par[e.to] = v, depth[e.to] = depth[v] + 1; } } } vc<bool> cons(M); FOR(i, M) { int a = G.edges[i].frm, b = G.edges[i].to; X x = Monoid::op(phi[a], edge_label[i]); cons[i] = (x == phi[b]); } vc<WT> h(M, infty<WT>); vc<WT> q(N, infty<WT>); for (auto& e: G.edges) { if (dist[e.frm] == infty<WT>) continue; if (!cons[e.id] && chmin(h[e.id], dist[e.frm] + dist[e.to] + e.cost)) { que.emplace(h[e.id], e.id); } } vc<int> root(N); FOR(v, N) root[v] = v; auto get_root = [&](int v) -> int { while (root[v] != v) { v = root[v] = root[root[v]]; } return v; }; while (len(que)) { auto [x, eid] = POP(que); if (x != h[eid]) continue; int a = G.edges[eid].frm, b = G.edges[eid].to; a = get_root(a), b = get_root(b); vc<int> B; while (a != b) { if (depth[a] < depth[b]) swap(a, b); B.eb(a), a = get_root(par[a]); } for (auto& w: B) { root[w] = a, q[w] = x - dist[w]; for (auto& e: G[w]) { if (cons[e.id] && chmin(h[e.id], q[w] + dist[e.to] + e.cost)) { que.emplace(h[e.id], e.id); } } } } vc<WT> ANS(N, infty<WT>); FOR(v, N) ANS[v] = (phi[v] == Monoid::unit() ? q[v] : dist[v]); return ANS; }