This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/shortest_path/bfs_bitset.hpp"
#include "ds/my_bitset.hpp"
// 密グラフの重みなし最短路問題
// 01 行列を vc<bitset> の形で渡す
// O(N^2/w)
// 参考:(4000,4000) を 4000 回で 2 秒以内?
template <typename BITSET>
vc<int> bfs_bitset(vc<BITSET>& G, int s) {
const int N = len(G);
assert(0 <= s && s < N);
vc<int> dist(N, -1);
BITSET unused, que;
if constexpr (is_same_v<BITSET, My_Bitset>) {
unused = BITSET(N, 1);
que = BITSET(N, 0);
}
FOR(v, N) unused[v] = 1;
que[s] = 1;
int d = 0;
while (1) {
int p = que._Find_first();
if (p >= N) break;
BITSET nxt;
if constexpr (is_same_v<BITSET, My_Bitset>) { nxt = BITSET(N); }
while (p < N) {
dist[p] = d;
unused[p] = 0;
nxt |= G[p];
p = que._Find_next(p);
}
que = nxt & unused;
++d;
}
return dist;
}
#line 2 "ds/my_bitset.hpp"
// https://codeforces.com/contest/914/problem/F
// https://yukicoder.me/problems/no/142
// わずかに普通の bitset より遅いときもあるようだが,
// 固定長にしたくないときや slice 操作が必要なときに使う
struct My_Bitset {
using T = My_Bitset;
int N;
vc<u64> dat;
// x で埋める
My_Bitset(int N = 0, int x = 0) : N(N) {
assert(x == 0 || x == 1);
u64 v = (x == 0 ? 0 : -1);
dat.assign((N + 63) >> 6, v);
if (N) dat.back() >>= (64 * len(dat) - N);
}
int size() { return N; }
void resize(int size) {
dat.resize((size + 63) >> 6);
int remainingBits = size & 63;
if (remainingBits != 0) {
u64 mask = (u64(1) << remainingBits) - 1;
dat.back() &= mask;
}
N = size;
}
// thanks to chatgpt!
class Proxy {
public:
Proxy(vc<u64> &d, int i) : dat(d), index(i) {}
operator bool() const { return (dat[index >> 6] >> (index & 63)) & 1; }
Proxy &operator=(u64 value) {
dat[index >> 6] &= ~(u64(1) << (index & 63));
dat[index >> 6] |= (value & 1) << (index & 63);
return *this;
}
void flip() {
dat[index >> 6] ^= (u64(1) << (index & 63)); // XOR to flip the bit
}
private:
vc<u64> &dat;
int index;
};
Proxy operator[](int i) { return Proxy(dat, i); }
T &operator&=(const T &p) {
assert(N == p.N);
FOR(i, len(dat)) dat[i] &= p.dat[i];
return *this;
}
T &operator|=(const T &p) {
assert(N == p.N);
FOR(i, len(dat)) dat[i] |= p.dat[i];
return *this;
}
T &operator^=(const T &p) {
assert(N == p.N);
FOR(i, len(dat)) dat[i] ^= p.dat[i];
return *this;
}
T operator&(const T &p) const { return T(*this) &= p; }
T operator|(const T &p) const { return T(*this) |= p; }
T operator^(const T &p) const { return T(*this) ^= p; }
int count() {
int ans = 0;
for (u64 val: dat) ans += popcnt(val);
return ans;
}
int next(int i) {
chmax(i, 0);
if (i >= N) return N;
int k = i >> 6;
{
u64 x = dat[k];
int s = i & 63;
x = (x >> s) << s;
if (x) return (k << 6) | lowbit(x);
}
FOR(idx, k + 1, len(dat)) {
if (dat[idx] == 0) continue;
return (idx << 6) | lowbit(dat[idx]);
}
return N;
}
int prev(int i) {
chmin(i, N - 1);
if (i <= -1) return -1;
int k = i >> 6;
if ((i & 63) < 63) {
u64 x = dat[k];
x &= (u64(1) << ((i & 63) + 1)) - 1;
if (x) return (k << 6) | topbit(x);
--k;
}
FOR_R(idx, k + 1) {
if (dat[idx] == 0) continue;
return (idx << 6) | topbit(dat[idx]);
}
return -1;
}
My_Bitset range(int L, int R) {
assert(L <= R);
My_Bitset p(R - L);
int rm = (R - L) & 63;
FOR(rm) {
p[R - L - 1] = bool((*this)[R - 1]);
--R;
}
int n = (R - L) >> 6;
int hi = L & 63;
int lo = 64 - hi;
int s = L >> 6;
if (hi == 0) {
FOR(i, n) { p.dat[i] ^= dat[s + i]; }
} else {
FOR(i, n) { p.dat[i] ^= (dat[s + i] >> hi) ^ (dat[s + i + 1] << lo); }
}
return p;
}
int count_range(int L, int R) {
assert(L <= R);
int cnt = 0;
while ((L < R) && (L & 63)) cnt += (*this)[L++];
while ((L < R) && (R & 63)) cnt += (*this)[--R];
int l = L >> 6, r = R >> 6;
FOR(i, l, r) cnt += popcnt(dat[i]);
return cnt;
}
// [L,R) に p を代入
void assign_to_range(int L, int R, My_Bitset &p) {
assert(p.N == R - L);
int a = 0, b = p.N;
while (L < R && (L & 63)) { (*this)[L++] = bool(p[a++]); }
while (L < R && (R & 63)) { (*this)[--R] = bool(p[--b]); }
// p[a:b] を [L:R] に
int l = L >> 6, r = R >> 6;
int s = a >> 6, t = b >> t;
int n = r - l;
if (!(a & 63)) {
FOR(i, n) dat[l + i] = p.dat[s + i];
} else {
int hi = a & 63;
int lo = 64 - hi;
FOR(i, n) dat[l + i] = (p.dat[s + i] >> hi) | (p.dat[1 + s + i] << lo);
}
}
// [L,R) に p を xor
void xor_to_range(int L, int R, My_Bitset &p) {
assert(p.N == R - L);
int a = 0, b = p.N;
while (L < R && (L & 63)) {
dat[L >> 6] ^= u64(p[a]) << (L & 63);
++a, ++L;
}
while (L < R && (R & 63)) {
--b, --R;
dat[R >> 6] ^= u64(p[b]) << (R & 63);
}
// p[a:b] を [L:R] に
int l = L >> 6, r = R >> 6;
int s = a >> 6, t = b >> t;
int n = r - l;
if (!(a & 63)) {
FOR(i, n) dat[l + i] ^= p.dat[s + i];
} else {
int hi = a & 63;
int lo = 64 - hi;
FOR(i, n) dat[l + i] ^= (p.dat[s + i] >> hi) | (p.dat[1 + s + i] << lo);
}
}
// [L,R) に p を and
void and_to_range(int L, int R, My_Bitset &p) {
assert(p.N == R - L);
int a = 0, b = p.N;
while (L < R && (L & 63)) {
if (!p[a++]) (*this)[L++] = 0;
}
while (L < R && (R & 63)) {
if (!p[--b]) (*this)[--R] = 0;
}
// p[a:b] を [L:R] に
int l = L >> 6, r = R >> 6;
int s = a >> 6, t = b >> t;
int n = r - l;
if (!(a & 63)) {
FOR(i, n) dat[l + i] &= p.dat[s + i];
} else {
int hi = a & 63;
int lo = 64 - hi;
FOR(i, n) dat[l + i] &= (p.dat[s + i] >> hi) | (p.dat[1 + s + i] << lo);
}
}
// [L,R) に p を or
void or_to_range(int L, int R, My_Bitset &p) {
assert(p.N == R - L);
int a = 0, b = p.N;
while (L < R && (L & 63)) {
dat[L >> 6] |= u64(p[a]) << (L & 63);
++a, ++L;
}
while (L < R && (R & 63)) {
--b, --R;
dat[R >> 6] |= u64(p[b]) << (R & 63);
}
// p[a:b] を [L:R] に
int l = L >> 6, r = R >> 6;
int s = a >> 6, t = b >> t;
int n = r - l;
if (!(a & 63)) {
FOR(i, n) dat[l + i] |= p.dat[s + i];
} else {
int hi = a & 63;
int lo = 64 - hi;
FOR(i, n) dat[l + i] |= (p.dat[s + i] >> hi) | (p.dat[1 + s + i] << lo);
}
}
string to_string() const {
string S;
FOR(i, N) S += '0' + (dat[i >> 6] >> (i & 63) & 1);
return S;
}
// bitset に仕様を合わせる
void set(int i) { (*this)[i] = 1; }
void reset(int i) { (*this)[i] = 0; }
void flip(int i) { (*this)[i].flip(); }
void set() {
fill(all(dat), u64(-1));
resize(N);
}
void reset() { fill(all(dat), 0); }
int _Find_first() { return next(0); }
int _Find_next(int p) { return next(p + 1); }
};
#line 2 "graph/shortest_path/bfs_bitset.hpp"
// 密グラフの重みなし最短路問題
// 01 行列を vc<bitset> の形で渡す
// O(N^2/w)
// 参考:(4000,4000) を 4000 回で 2 秒以内?
template <typename BITSET>
vc<int> bfs_bitset(vc<BITSET>& G, int s) {
const int N = len(G);
assert(0 <= s && s < N);
vc<int> dist(N, -1);
BITSET unused, que;
if constexpr (is_same_v<BITSET, My_Bitset>) {
unused = BITSET(N, 1);
que = BITSET(N, 0);
}
FOR(v, N) unused[v] = 1;
que[s] = 1;
int d = 0;
while (1) {
int p = que._Find_first();
if (p >= N) break;
BITSET nxt;
if constexpr (is_same_v<BITSET, My_Bitset>) { nxt = BITSET(N); }
while (p < N) {
dist[p] = d;
unused[p] = 0;
nxt |= G[p];
p = que._Find_next(p);
}
que = nxt & unused;
++d;
}
return dist;
}