This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/shortest_path/K_shortest_walk.hpp"
#include "ds/meldable_heap.hpp"
#include "graph/shortest_path/dijkstra.hpp"
#include "graph/reverse_graph.hpp"
// infty<T> 埋めして必ず長さ K にしたものをかえす。
template <typename T, typename GT, int NODES>
vc<T> K_shortest_walk(GT &G, int s, int t, int K) {
static_assert(GT::is_directed);
int N = G.N;
auto RG = reverse_graph(G);
auto [dist, par] = dijkstra<T, decltype(RG)>(RG, t);
if (dist[s] == infty<T>) { return vc<T>(K, infty<T>); }
using P = pair<T, int>;
Meldable_Heap<P, true, NODES, true> X;
using np = typename decltype(X)::np;
vc<np> nodes(N, nullptr);
vc<bool> vis(N);
vc<int> st = {t};
vis[t] = 1;
while (len(st)) {
int v = POP(st);
bool done = 0;
for (auto &&e: G[v]) {
if (dist[e.to] == infty<T>) continue;
if (!done && par[v] == e.to && dist[v] == dist[e.to] + e.cost) {
done = 1;
continue;
}
T cost = -dist[v] + e.cost + dist[e.to];
nodes[v] = X.push(nodes[v], {cost, e.to});
}
for (auto &&e: RG[v]) {
if (vis[e.to]) continue;
if (par[e.to] == v) {
nodes[e.to] = X.meld(nodes[e.to], nodes[v]);
vis[e.to] = 1;
st.eb(e.to);
}
}
}
T base = dist[s];
vc<T> ANS = {base};
if (nodes[s]) {
using PAIR = pair<T, np>;
auto comp = [](auto a, auto b) { return a.fi > b.fi; };
priority_queue<PAIR, vc<PAIR>, decltype(comp)> que(comp);
que.emplace(base + X.top(nodes[s]).fi, nodes[s]);
while (len(ANS) < K && len(que)) {
auto [d, n] = que.top();
que.pop();
ANS.eb(d);
if (n->l) que.emplace(d + (n->l->x.fi) - (n->x.fi), n->l);
if (n->r) que.emplace(d + (n->r->x.fi) - (n->x.fi), n->r);
np m = nodes[n->x.se];
if (m) { que.emplace(d + m->x.fi, m); }
}
}
while (len(ANS) < K) ANS.eb(infty<T>);
return ANS;
}
#line 1 "ds/meldable_heap.hpp"
template <typename VAL, bool PERSISTENT, int NODES, bool TOP_IS_MIN>
struct Meldable_Heap {
struct Node {
Node *l, *r;
VAL x;
u32 size, dist; // dist: leaf までの距離
};
Node *pool;
int pid;
using np = Node *;
Meldable_Heap() : pid(0) { pool = new Node[NODES]; }
np new_root() { return nullptr; }
np new_node(const VAL &x) {
pool[pid].l = pool[pid].r = nullptr;
pool[pid].x = x, pool[pid].size = 1, pool[pid].dist = 1;
return &(pool[pid++]);
}
np copy_node(np a) {
if (!a || !PERSISTENT) return a;
np b = new_node(a->x);
b->l = a->l, b->r = a->r;
b->size = a->size, b->dist = a->dist;
return b;
}
np meld(np a, np b) {
if (!a) return b;
if (!b) return a;
a = copy_node(a);
b = copy_node(b);
if constexpr (TOP_IS_MIN) {
if ((a->x) > (b->x)) swap(a, b);
} else {
if ((a->x) < (b->x)) swap(a, b);
}
a->r = meld(a->r, b);
if (!(a->l) || (a->l->dist < a->r->dist)) swap(a->l, a->r);
a->dist = (a->r ? a->r->dist : 0) + 1;
a->size = 1;
if (a->l) a->size += a->l->size;
if (a->r) a->size += a->r->size;
return a;
}
np push(np a, VAL x) { return meld(a, new_node(x)); }
np pop(np a) { return meld(a->l, a->r); }
VAL top(np a) { return a->x; }
vc<VAL> get_all(np a) {
vc<VAL> A;
auto dfs = [&](auto &dfs, np a) -> void {
if (!a) return;
A.eb(a->x), dfs(dfs, a->l), dfs(dfs, a->r);
};
dfs(dfs, a);
sort(all(A));
if (!TOP_IS_MIN) reverse(all(A));
return A;
}
};
#line 2 "graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
static constexpr bool is_directed = directed;
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
#ifdef FASTIO
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
#endif
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed)
csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
#ifdef FASTIO
void debug() {
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
}
#endif
vc<int> new_idx;
vc<bool> used_e;
// G における頂点 V[i] が、新しいグラフで i になるようにする
// {G, es}
Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
if (len(new_idx) != N) new_idx.assign(N, -1);
if (len(used_e) != M) used_e.assign(M, 0);
int n = len(V);
FOR(i, n) new_idx[V[i]] = i;
Graph<T, directed> G(n);
vc<int> history;
FOR(i, n) {
for (auto&& e: (*this)[V[i]]) {
if (used_e[e.id]) continue;
int a = e.frm, b = e.to;
if (new_idx[a] != -1 && new_idx[b] != -1) {
history.eb(e.id);
used_e[e.id] = 1;
int eid = (keep_eid ? e.id : -1);
G.add(new_idx[a], new_idx[b], e.cost, eid);
}
}
}
FOR(i, n) new_idx[V[i]] = -1;
for (auto&& eid: history) used_e[eid] = 0;
G.build();
return G;
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 3 "graph/shortest_path/dijkstra.hpp"
template <typename T, typename GT>
pair<vc<T>, vc<int>> dijkstra_dense(GT& G, int s) {
const int N = G.N;
vc<T> dist(N, infty<T>);
vc<int> par(N, -1);
vc<bool> done(N);
dist[s] = 0;
while (1) {
int v = -1;
T mi = infty<T>;
FOR(i, N) {
if (!done[i] && chmin(mi, dist[i])) v = i;
}
if (v == -1) break;
done[v] = 1;
for (auto&& e: G[v]) {
if (chmin(dist[e.to], dist[v] + e.cost)) par[e.to] = v;
}
}
return {dist, par};
}
template <typename T, typename GT, bool DENSE = false>
pair<vc<T>, vc<int>> dijkstra(GT& G, int v) {
if (DENSE) return dijkstra_dense<T>(G, v);
auto N = G.N;
vector<T> dist(N, infty<T>);
vector<int> par(N, -1);
using P = pair<T, int>;
priority_queue<P, vector<P>, greater<P>> que;
dist[v] = 0;
que.emplace(0, v);
while (!que.empty()) {
auto [dv, v] = que.top();
que.pop();
if (dv > dist[v]) continue;
for (auto&& e: G[v]) {
if (chmin(dist[e.to], dist[e.frm] + e.cost)) {
par[e.to] = e.frm;
que.emplace(dist[e.to], e.to);
}
}
}
return {dist, par};
}
// 多点スタート。[dist, par, root]
template <typename T, typename GT>
tuple<vc<T>, vc<int>, vc<int>> dijkstra(GT& G, vc<int> vs) {
assert(G.is_prepared());
int N = G.N;
vc<T> dist(N, infty<T>);
vc<int> par(N, -1);
vc<int> root(N, -1);
using P = pair<T, int>;
priority_queue<P, vector<P>, greater<P>> que;
for (auto&& v: vs) {
dist[v] = 0;
root[v] = v;
que.emplace(T(0), v);
}
while (!que.empty()) {
auto [dv, v] = que.top();
que.pop();
if (dv > dist[v]) continue;
for (auto&& e: G[v]) {
if (chmin(dist[e.to], dist[e.frm] + e.cost)) {
root[e.to] = root[e.frm];
par[e.to] = e.frm;
que.push(mp(dist[e.to], e.to));
}
}
}
return {dist, par, root};
}
#line 2 "graph/reverse_graph.hpp"
template <typename GT>
GT reverse_graph(GT& G) {
static_assert(GT::is_directed);
GT G1(G.N);
for (auto&& e: G.edges) { G1.add(e.to, e.frm, e.cost, e.id); }
G1.build();
return G1;
}
#line 4 "graph/shortest_path/K_shortest_walk.hpp"
// infty<T> 埋めして必ず長さ K にしたものをかえす。
template <typename T, typename GT, int NODES>
vc<T> K_shortest_walk(GT &G, int s, int t, int K) {
static_assert(GT::is_directed);
int N = G.N;
auto RG = reverse_graph(G);
auto [dist, par] = dijkstra<T, decltype(RG)>(RG, t);
if (dist[s] == infty<T>) { return vc<T>(K, infty<T>); }
using P = pair<T, int>;
Meldable_Heap<P, true, NODES, true> X;
using np = typename decltype(X)::np;
vc<np> nodes(N, nullptr);
vc<bool> vis(N);
vc<int> st = {t};
vis[t] = 1;
while (len(st)) {
int v = POP(st);
bool done = 0;
for (auto &&e: G[v]) {
if (dist[e.to] == infty<T>) continue;
if (!done && par[v] == e.to && dist[v] == dist[e.to] + e.cost) {
done = 1;
continue;
}
T cost = -dist[v] + e.cost + dist[e.to];
nodes[v] = X.push(nodes[v], {cost, e.to});
}
for (auto &&e: RG[v]) {
if (vis[e.to]) continue;
if (par[e.to] == v) {
nodes[e.to] = X.meld(nodes[e.to], nodes[v]);
vis[e.to] = 1;
st.eb(e.to);
}
}
}
T base = dist[s];
vc<T> ANS = {base};
if (nodes[s]) {
using PAIR = pair<T, np>;
auto comp = [](auto a, auto b) { return a.fi > b.fi; };
priority_queue<PAIR, vc<PAIR>, decltype(comp)> que(comp);
que.emplace(base + X.top(nodes[s]).fi, nodes[s]);
while (len(ANS) < K && len(que)) {
auto [d, n] = que.top();
que.pop();
ANS.eb(d);
if (n->l) que.emplace(d + (n->l->x.fi) - (n->x.fi), n->l);
if (n->r) que.emplace(d + (n->r->x.fi) - (n->x.fi), n->r);
np m = nodes[n->x.se];
if (m) { que.emplace(d + m->x.fi, m); }
}
}
while (len(ANS) < K) ANS.eb(infty<T>);
return ANS;
}