This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "graph/shortest_path/K_shortest_walk.hpp"
#include "ds/meldable_heap.hpp" #include "graph/shortest_path/dijkstra.hpp" #include "graph/reverse_graph.hpp" // infty<T> 埋めして必ず長さ K にしたものをかえす。 template <typename T, typename GT> vc<T> K_shortest_walk(GT &G, int s, int t, int K) { static_assert(GT::is_directed); int N = G.N; auto RG = reverse_graph(G); auto [dist, par] = dijkstra<T, decltype(RG)>(RG, t); if (dist[s] == infty<T>) { return vc<T>(K, infty<T>); } using P = pair<T, int>; Meldable_Heap<P, true, true> X(20 * G.M); using np = typename decltype(X)::np; vc<np> nodes(N, nullptr); vc<bool> vis(N); vc<int> st = {t}; vis[t] = 1; while (len(st)) { int v = POP(st); bool done = 0; for (auto &&e: G[v]) { if (dist[e.to] == infty<T>) continue; if (!done && par[v] == e.to && dist[v] == dist[e.to] + e.cost) { done = 1; continue; } T cost = -dist[v] + e.cost + dist[e.to]; nodes[v] = X.push(nodes[v], {cost, e.to}); } for (auto &&e: RG[v]) { if (vis[e.to]) continue; if (par[e.to] == v) { nodes[e.to] = X.meld(nodes[e.to], nodes[v]); vis[e.to] = 1; st.eb(e.to); } } } T base = dist[s]; vc<T> ANS = {base}; if (nodes[s]) { using PAIR = pair<T, np>; auto comp = [](auto a, auto b) { return a.fi > b.fi; }; priority_queue<PAIR, vc<PAIR>, decltype(comp)> que(comp); que.emplace(base + X.top(nodes[s]).fi, nodes[s]); while (len(ANS) < K && len(que)) { auto [d, n] = que.top(); que.pop(); ANS.eb(d); if (n->l) que.emplace(d + (n->l->x.fi) - (n->x.fi), n->l); if (n->r) que.emplace(d + (n->r->x.fi) - (n->x.fi), n->r); np m = nodes[n->x.se]; if (m) { que.emplace(d + m->x.fi, m); } } } while (len(ANS) < K) ANS.eb(infty<T>); return ANS; }
#line 1 "ds/meldable_heap.hpp" template <typename VAL, bool PERSISTENT, bool TOP_IS_MIN> struct Meldable_Heap { struct Node { Node *l, *r; VAL x; u32 size, dist; // dist: leaf までの距離 }; Node *pool; const int NODES; int pid; using np = Node *; Meldable_Heap(int NODES) : NODES(NODES), pid(0) { pool = new Node[NODES]; } ~Meldable_Heap() { delete[] pool; } np new_root() { return nullptr; } np new_node(const VAL &x) { pool[pid].l = pool[pid].r = nullptr; pool[pid].x = x, pool[pid].size = 1, pool[pid].dist = 1; return &(pool[pid++]); } np copy_node(np a) { if (!a || !PERSISTENT) return a; np b = new_node(a->x); b->l = a->l, b->r = a->r; b->size = a->size, b->dist = a->dist; return b; } np meld(np a, np b) { if (!a) return b; if (!b) return a; a = copy_node(a); b = copy_node(b); if constexpr (TOP_IS_MIN) { if ((a->x) > (b->x)) swap(a, b); } else { if ((a->x) < (b->x)) swap(a, b); } a->r = meld(a->r, b); if (!(a->l) || (a->l->dist < a->r->dist)) swap(a->l, a->r); a->dist = (a->r ? a->r->dist : 0) + 1; a->size = 1; if (a->l) a->size += a->l->size; if (a->r) a->size += a->r->size; return a; } np push(np a, VAL x) { return meld(a, new_node(x)); } np pop(np a) { return meld(a->l, a->r); } VAL top(np a) { return a->x; } vc<VAL> get_all(np a) { vc<VAL> A; auto dfs = [&](auto &dfs, np a) -> void { if (!a) return; A.eb(a->x), dfs(dfs, a->l), dfs(dfs, a->r); }; dfs(dfs, a); sort(all(A)); if (!TOP_IS_MIN) reverse(all(A)); return A; } }; // 全体加算ができるようにする // path sum が実際の値となるようにすれば追加フィールドなしに実現できる // https://qoj.ac/contest/1699/problem/8518 template <typename VAL, bool PERSISTENT, bool TOP_IS_MIN> struct Lazy_Meldable_Heap { struct Node { Node *l, *r; VAL x; u32 size; }; Node *pool; const int NODES; int pid; using np = Node *; Lazy_Meldable_Heap(int NODES) : NODES(NODES), pid(0) { pool = new Node[NODES]; } ~Lazy_Meldable_Heap() { delete[] pool; } np new_root() { return nullptr; } np new_node(const VAL &x) { pool[pid].l = pool[pid].r = nullptr; pool[pid].x = x, pool[pid].size = 1; return &(pool[pid++]); } np copy_node(np a) { if (!a || !PERSISTENT) return a; np b = new_node(a->x); b->l = a->l, b->r = a->r; b->size = a->size; return b; } np apply(np a, VAL x) { if (!a) return a; a = copy_node(a); a->x += x; return a; } np meld(np a, np b, VAL add_a = 0, VAL add_b = 0) { if (!a) { return (add_b == 0 ? b : apply(b, add_b)); } if (!b) { return (add_a == 0 ? a : apply(a, add_a)); } if constexpr (TOP_IS_MIN) { if ((a->x + add_a) > (b->x + add_b)) swap(a, b), swap(add_a, add_b); } else { if ((a->x + add_a) < (b->x + add_b)) swap(a, b), swap(add_a, add_b); } a = copy_node(a); a->x += add_a; a->r = meld(a->r, b, 0, -a->x + add_b); if (!(a->l) || (a->l->size < a->r->size)) swap(a->l, a->r); a->size = 1; if (a->l) a->size += a->l->size; if (a->r) a->size += a->r->size; return a; } np push(np a, VAL x) { return meld(a, new_node(x)); } np pop(np a) { return meld(a->l, a->r, a->x, a->x); } VAL top(np a) { return a->x; } vc<VAL> get_all(np a) { vc<VAL> A; auto dfs = [&](auto &dfs, np a, VAL lazy) -> void { if (!a) return; A.eb(a->x + lazy); lazy += a->x; dfs(dfs, a->l, lazy), dfs(dfs, a->r, lazy); }; dfs(dfs, a, 0); sort(all(A)); if (!TOP_IS_MIN) reverse(all(A)); return A; } }; #line 2 "ds/hashmap.hpp" // u64 -> Val template <typename Val> struct HashMap { // n は入れたいものの個数で ok HashMap(u32 n = 0) { build(n); } void build(u32 n) { u32 k = 8; while (k < n * 2) k *= 2; cap = k / 2, mask = k - 1; key.resize(k), val.resize(k), used.assign(k, 0); } // size を保ったまま. size=0 にするときは build すること. void clear() { used.assign(len(used), 0); cap = (mask + 1) / 2; } int size() { return len(used) / 2 - cap; } int index(const u64& k) { int i = 0; for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {} return i; } Val& operator[](const u64& k) { if (cap == 0) extend(); int i = index(k); if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; } return val[i]; } Val get(const u64& k, Val default_value) { int i = index(k); return (used[i] ? val[i] : default_value); } bool count(const u64& k) { int i = index(k); return used[i] && key[i] == k; } // f(key, val) template <typename F> void enumerate_all(F f) { FOR(i, len(used)) if (used[i]) f(key[i], val[i]); } private: u32 cap, mask; vc<u64> key; vc<Val> val; vc<bool> used; u64 hash(u64 x) { static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count(); x += FIXED_RANDOM; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return (x ^ (x >> 31)) & mask; } void extend() { vc<pair<u64, Val>> dat; dat.reserve(len(used) / 2 - cap); FOR(i, len(used)) { if (used[i]) dat.eb(key[i], val[i]); } build(2 * len(dat)); for (auto& [a, b]: dat) (*this)[a] = b; } }; #line 3 "graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { static constexpr bool is_directed = directed; int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void build(int n) { N = n, M = 0; prepared = 0; edges.clear(); indptr.clear(); csr_edges.clear(); vc_deg.clear(); vc_indeg.clear(); vc_outdeg.clear(); } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } #ifdef FASTIO // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } #endif void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } #ifdef FASTIO void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } #endif vc<int> new_idx; vc<bool> used_e; // G における頂点 V[i] が、新しいグラフで i になるようにする // {G, es} // sum(deg(v)) の計算量になっていて、 // 新しいグラフの n+m より大きい可能性があるので注意 Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) { if (len(new_idx) != N) new_idx.assign(N, -1); int n = len(V); FOR(i, n) new_idx[V[i]] = i; Graph<T, directed> G(n); vc<int> history; FOR(i, n) { for (auto&& e: (*this)[V[i]]) { if (len(used_e) <= e.id) used_e.resize(e.id + 1); if (used_e[e.id]) continue; int a = e.frm, b = e.to; if (new_idx[a] != -1 && new_idx[b] != -1) { history.eb(e.id); used_e[e.id] = 1; int eid = (keep_eid ? e.id : -1); G.add(new_idx[a], new_idx[b], e.cost, eid); } } } FOR(i, n) new_idx[V[i]] = -1; for (auto&& eid: history) used_e[eid] = 0; G.build(); return G; } Graph<T, true> to_directed_tree(int root = -1) { if (root == -1) root = 0; assert(!is_directed && prepared && M == N - 1); Graph<T, true> G1(N); vc<int> par(N, -1); auto dfs = [&](auto& dfs, int v) -> void { for (auto& e: (*this)[v]) { if (e.to == par[v]) continue; par[e.to] = v, dfs(dfs, e.to); } }; dfs(dfs, root); for (auto& e: edges) { int a = e.frm, b = e.to; if (par[a] == b) swap(a, b); assert(par[b] == a); G1.add(a, b, e.cost); } G1.build(); return G1; } HashMap<int> MP_FOR_EID; int get_eid(u64 a, u64 b) { if (len(MP_FOR_EID) == 0) { MP_FOR_EID.build(N - 1); for (auto& e: edges) { u64 a = e.frm, b = e.to; u64 k = to_eid_key(a, b); MP_FOR_EID[k] = e.id; } } return MP_FOR_EID.get(to_eid_key(a, b), -1); } u64 to_eid_key(u64 a, u64 b) { if (!directed && a > b) swap(a, b); return N * a + b; } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 3 "graph/shortest_path/dijkstra.hpp" template <typename T, typename GT> pair<vc<T>, vc<int>> dijkstra_dense(GT& G, int s) { const int N = G.N; vc<T> dist(N, infty<T>); vc<int> par(N, -1); vc<bool> done(N); dist[s] = 0; while (1) { int v = -1; T mi = infty<T>; FOR(i, N) { if (!done[i] && chmin(mi, dist[i])) v = i; } if (v == -1) break; done[v] = 1; for (auto&& e: G[v]) { if (chmin(dist[e.to], dist[v] + e.cost)) par[e.to] = v; } } return {dist, par}; } template <typename T, typename GT, bool DENSE = false> pair<vc<T>, vc<int>> dijkstra(GT& G, int v) { if (DENSE) return dijkstra_dense<T>(G, v); auto N = G.N; vector<T> dist(N, infty<T>); vector<int> par(N, -1); using P = pair<T, int>; priority_queue<P, vector<P>, greater<P>> que; dist[v] = 0; que.emplace(0, v); while (!que.empty()) { auto [dv, v] = que.top(); que.pop(); if (dv > dist[v]) continue; for (auto&& e: G[v]) { if (chmin(dist[e.to], dist[e.frm] + e.cost)) { par[e.to] = e.frm; que.emplace(dist[e.to], e.to); } } } return {dist, par}; } // 多点スタート。[dist, par, root] template <typename T, typename GT> tuple<vc<T>, vc<int>, vc<int>> dijkstra(GT& G, vc<int> vs) { assert(G.is_prepared()); int N = G.N; vc<T> dist(N, infty<T>); vc<int> par(N, -1); vc<int> root(N, -1); using P = pair<T, int>; priority_queue<P, vector<P>, greater<P>> que; for (auto&& v: vs) { dist[v] = 0; root[v] = v; que.emplace(T(0), v); } while (!que.empty()) { auto [dv, v] = que.top(); que.pop(); if (dv > dist[v]) continue; for (auto&& e: G[v]) { if (chmin(dist[e.to], dist[e.frm] + e.cost)) { root[e.to] = root[e.frm]; par[e.to] = e.frm; que.push(mp(dist[e.to], e.to)); } } } return {dist, par, root}; } #line 2 "graph/reverse_graph.hpp" template <typename GT> GT reverse_graph(GT& G) { static_assert(GT::is_directed); GT G1(G.N); for (auto&& e: G.edges) { G1.add(e.to, e.frm, e.cost, e.id); } G1.build(); return G1; } #line 4 "graph/shortest_path/K_shortest_walk.hpp" // infty<T> 埋めして必ず長さ K にしたものをかえす。 template <typename T, typename GT> vc<T> K_shortest_walk(GT &G, int s, int t, int K) { static_assert(GT::is_directed); int N = G.N; auto RG = reverse_graph(G); auto [dist, par] = dijkstra<T, decltype(RG)>(RG, t); if (dist[s] == infty<T>) { return vc<T>(K, infty<T>); } using P = pair<T, int>; Meldable_Heap<P, true, true> X(20 * G.M); using np = typename decltype(X)::np; vc<np> nodes(N, nullptr); vc<bool> vis(N); vc<int> st = {t}; vis[t] = 1; while (len(st)) { int v = POP(st); bool done = 0; for (auto &&e: G[v]) { if (dist[e.to] == infty<T>) continue; if (!done && par[v] == e.to && dist[v] == dist[e.to] + e.cost) { done = 1; continue; } T cost = -dist[v] + e.cost + dist[e.to]; nodes[v] = X.push(nodes[v], {cost, e.to}); } for (auto &&e: RG[v]) { if (vis[e.to]) continue; if (par[e.to] == v) { nodes[e.to] = X.meld(nodes[e.to], nodes[v]); vis[e.to] = 1; st.eb(e.to); } } } T base = dist[s]; vc<T> ANS = {base}; if (nodes[s]) { using PAIR = pair<T, np>; auto comp = [](auto a, auto b) { return a.fi > b.fi; }; priority_queue<PAIR, vc<PAIR>, decltype(comp)> que(comp); que.emplace(base + X.top(nodes[s]).fi, nodes[s]); while (len(ANS) < K && len(que)) { auto [d, n] = que.top(); que.pop(); ANS.eb(d); if (n->l) que.emplace(d + (n->l->x.fi) - (n->x.fi), n->l); if (n->r) que.emplace(d + (n->r->x.fi) - (n->x.fi), n->r); np m = nodes[n->x.se]; if (m) { que.emplace(d + m->x.fi, m); } } } while (len(ANS) < K) ANS.eb(infty<T>); return ANS; }