library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub maspypy/library

:heavy_check_mark: graph/shortest_path/K_shortest_path.hpp

Depends on

Verified with

Code

#include "graph/base.hpp"

// (cost, vs, es)
template <typename T, typename GT>
vc<tuple<T, vc<int>, vc<int>>> K_shortest_path(GT& G, int s, int t, int K) {
  assert(GT::is_directed);
  const int N = G.N;

  // (cost, vs, es)
  vc<tuple<T, vc<int>, vc<int>>> res;
  // 探索の起点 (es, ng_edges)
  vc<pair<vc<int>, vc<int>>> nodes;
  // 答の候補 (cost, es, ng_es, n), (ng_es, n):その path を見つけたときの条件
  vc<tuple<T, vc<int>, vc<int>, int>> paths;

  nodes.eb(vc<int>(), vc<int>());
  vc<T> dist(N, infty<T>);
  vc<bool> ng_v(N);
  vc<bool> ng_e(G.M);
  vc<int> par(N, -1);

  while (len(res) < K) {
    for (auto&& [es, ng_es]: nodes) {
      fill(all(par), -1);
      fill(all(ng_v), 0);
      fill(all(ng_e), 0);
      fill(all(dist), infty<T>);

      T pref_cost = 0;
      for (auto&& x: es) pref_cost += G.edges[x].cost;

      for (auto&& x: es) ng_v[G.edges[x].frm] = 1, ng_e[x] = 1;
      for (auto&& x: ng_es) ng_e[x] = 1;
      // dijkstra
      pqg<pair<T, int>> que;
      auto add = [&](int v, T d, int p) -> void {
        if (chmin(dist[v], d)) {
          que.emplace(d, v);
          par[v] = p;
        }
      };
      int s0 = (es.empty() ? s : G.edges[es.back()].to);
      add(s0, pref_cost, -1);
      while (len(que)) {
        auto [dv, v] = POP(que);
        if (dv != dist[v]) continue;
        if (v == t) break;
        for (auto&& e: G[v]) {
          if (ng_e[e.id] || ng_v[e.to]) continue;
          add(e.to, dv + e.cost, e.id);
        }
      }
      // failed
      if (par[t] == -1) continue;
      // restore path
      vc<int> add_e;
      {
        int v = t;
        while (v != s0) {
          add_e.eb(par[v]);
          v = G.edges[par[v]].frm;
        }
      }
      reverse(all(add_e));
      int n = len(es);
      // find a path
      es.insert(es.end(), all(add_e));
      paths.eb(dist[t], es, ng_es, n);
    }
    // choose best path
    if (len(paths) == 0) break;
    pair<int, T> best = {-1, infty<T>};
    FOR(i, len(paths)) {
      T cost = get<0>(paths[i]);
      if (chmin(best.se, cost)) best.fi = i;
    }
    int idx = best.fi;
    swap(paths[idx], paths[len(paths) - 1]);
    auto [cost, es, ng_es, n] = POP(paths);
    vc<int> vs = {s};
    for (auto&& x: es) vs.eb(G.edges[x].to);
    res.eb(cost, vs, es);

    nodes.clear();
    FOR(k, n, len(es)) {
      // k 番目の辺までを固定して
      vc<int> new_es = {es.begin(), es.begin() + k};
      vc<int> new_ng = ng_es;
      new_ng.eb(es[k]);
      nodes.eb(new_es, new_ng);
    }
  }
  return res;
}
#line 2 "graph/base.hpp"

template <typename T>
struct Edge {
  int frm, to;
  T cost;
  int id;
};

template <typename T = int, bool directed = false>
struct Graph {
  static constexpr bool is_directed = directed;
  int N, M;
  using cost_type = T;
  using edge_type = Edge<T>;
  vector<edge_type> edges;
  vector<int> indptr;
  vector<edge_type> csr_edges;
  vc<int> vc_deg, vc_indeg, vc_outdeg;
  bool prepared;

  class OutgoingEdges {
  public:
    OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}

    const edge_type* begin() const {
      if (l == r) { return 0; }
      return &G->csr_edges[l];
    }

    const edge_type* end() const {
      if (l == r) { return 0; }
      return &G->csr_edges[r];
    }

  private:
    const Graph* G;
    int l, r;
  };

  bool is_prepared() { return prepared; }

  Graph() : N(0), M(0), prepared(0) {}
  Graph(int N) : N(N), M(0), prepared(0) {}

  void build(int n) {
    N = n, M = 0;
    prepared = 0;
    edges.clear();
    indptr.clear();
    csr_edges.clear();
    vc_deg.clear();
    vc_indeg.clear();
    vc_outdeg.clear();
  }

  void add(int frm, int to, T cost = 1, int i = -1) {
    assert(!prepared);
    assert(0 <= frm && 0 <= to && to < N);
    if (i == -1) i = M;
    auto e = edge_type({frm, to, cost, i});
    edges.eb(e);
    ++M;
  }

#ifdef FASTIO
  // wt, off
  void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }

  void read_graph(int M, bool wt = false, int off = 1) {
    for (int m = 0; m < M; ++m) {
      INT(a, b);
      a -= off, b -= off;
      if (!wt) {
        add(a, b);
      } else {
        T c;
        read(c);
        add(a, b, c);
      }
    }
    build();
  }
#endif

  void build() {
    assert(!prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (auto&& e: edges) {
      indptr[e.frm + 1]++;
      if (!directed) indptr[e.to + 1]++;
    }
    for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
    auto counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (auto&& e: edges) {
      csr_edges[counter[e.frm]++] = e;
      if (!directed)
        csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
    }
  }

  OutgoingEdges operator[](int v) const {
    assert(prepared);
    return {this, indptr[v], indptr[v + 1]};
  }

  vc<int> deg_array() {
    if (vc_deg.empty()) calc_deg();
    return vc_deg;
  }

  pair<vc<int>, vc<int>> deg_array_inout() {
    if (vc_indeg.empty()) calc_deg_inout();
    return {vc_indeg, vc_outdeg};
  }

  int deg(int v) {
    if (vc_deg.empty()) calc_deg();
    return vc_deg[v];
  }

  int in_deg(int v) {
    if (vc_indeg.empty()) calc_deg_inout();
    return vc_indeg[v];
  }

  int out_deg(int v) {
    if (vc_outdeg.empty()) calc_deg_inout();
    return vc_outdeg[v];
  }

#ifdef FASTIO
  void debug() {
    print("Graph");
    if (!prepared) {
      print("frm to cost id");
      for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
    } else {
      print("indptr", indptr);
      print("frm to cost id");
      FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
    }
  }
#endif

  vc<int> new_idx;
  vc<bool> used_e;

  // G における頂点 V[i] が、新しいグラフで i になるようにする
  // {G, es}
  Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
    if (len(new_idx) != N) new_idx.assign(N, -1);
    int n = len(V);
    FOR(i, n) new_idx[V[i]] = i;
    Graph<T, directed> G(n);
    vc<int> history;
    FOR(i, n) {
      for (auto&& e: (*this)[V[i]]) {
        if (len(used_e) <= e.id) used_e.resize(e.id + 1);
        if (used_e[e.id]) continue;
        int a = e.frm, b = e.to;
        if (new_idx[a] != -1 && new_idx[b] != -1) {
          history.eb(e.id);
          used_e[e.id] = 1;
          int eid = (keep_eid ? e.id : -1);
          G.add(new_idx[a], new_idx[b], e.cost, eid);
        }
      }
    }
    FOR(i, n) new_idx[V[i]] = -1;
    for (auto&& eid: history) used_e[eid] = 0;
    G.build();
    return G;
  }

private:
  void calc_deg() {
    assert(vc_deg.empty());
    vc_deg.resize(N);
    for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
  }

  void calc_deg_inout() {
    assert(vc_indeg.empty());
    vc_indeg.resize(N);
    vc_outdeg.resize(N);
    for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
  }
};
#line 2 "graph/shortest_path/K_shortest_path.hpp"

// (cost, vs, es)
template <typename T, typename GT>
vc<tuple<T, vc<int>, vc<int>>> K_shortest_path(GT& G, int s, int t, int K) {
  assert(GT::is_directed);
  const int N = G.N;

  // (cost, vs, es)
  vc<tuple<T, vc<int>, vc<int>>> res;
  // 探索の起点 (es, ng_edges)
  vc<pair<vc<int>, vc<int>>> nodes;
  // 答の候補 (cost, es, ng_es, n), (ng_es, n):その path を見つけたときの条件
  vc<tuple<T, vc<int>, vc<int>, int>> paths;

  nodes.eb(vc<int>(), vc<int>());
  vc<T> dist(N, infty<T>);
  vc<bool> ng_v(N);
  vc<bool> ng_e(G.M);
  vc<int> par(N, -1);

  while (len(res) < K) {
    for (auto&& [es, ng_es]: nodes) {
      fill(all(par), -1);
      fill(all(ng_v), 0);
      fill(all(ng_e), 0);
      fill(all(dist), infty<T>);

      T pref_cost = 0;
      for (auto&& x: es) pref_cost += G.edges[x].cost;

      for (auto&& x: es) ng_v[G.edges[x].frm] = 1, ng_e[x] = 1;
      for (auto&& x: ng_es) ng_e[x] = 1;
      // dijkstra
      pqg<pair<T, int>> que;
      auto add = [&](int v, T d, int p) -> void {
        if (chmin(dist[v], d)) {
          que.emplace(d, v);
          par[v] = p;
        }
      };
      int s0 = (es.empty() ? s : G.edges[es.back()].to);
      add(s0, pref_cost, -1);
      while (len(que)) {
        auto [dv, v] = POP(que);
        if (dv != dist[v]) continue;
        if (v == t) break;
        for (auto&& e: G[v]) {
          if (ng_e[e.id] || ng_v[e.to]) continue;
          add(e.to, dv + e.cost, e.id);
        }
      }
      // failed
      if (par[t] == -1) continue;
      // restore path
      vc<int> add_e;
      {
        int v = t;
        while (v != s0) {
          add_e.eb(par[v]);
          v = G.edges[par[v]].frm;
        }
      }
      reverse(all(add_e));
      int n = len(es);
      // find a path
      es.insert(es.end(), all(add_e));
      paths.eb(dist[t], es, ng_es, n);
    }
    // choose best path
    if (len(paths) == 0) break;
    pair<int, T> best = {-1, infty<T>};
    FOR(i, len(paths)) {
      T cost = get<0>(paths[i]);
      if (chmin(best.se, cost)) best.fi = i;
    }
    int idx = best.fi;
    swap(paths[idx], paths[len(paths) - 1]);
    auto [cost, es, ng_es, n] = POP(paths);
    vc<int> vs = {s};
    for (auto&& x: es) vs.eb(G.edges[x].to);
    res.eb(cost, vs, es);

    nodes.clear();
    FOR(k, n, len(es)) {
      // k 番目の辺までを固定して
      vc<int> new_es = {es.begin(), es.begin() + k};
      vc<int> new_ng = ng_es;
      new_ng.eb(es[k]);
      nodes.eb(new_es, new_ng);
    }
  }
  return res;
}
Back to top page