This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/maximum_matching.hpp"
#include "graph/base.hpp"
// return : (match size, match)
// match[v] : マッチング相手 OR 0
// O(N^3)
// 「組合せ最適化」第2版, アルゴリズム 10.2
template <typename GT>
pair<int, vc<int>> maximum_matching(const GT& G) {
const int N = G.N;
vc<int> mu(N), phi(N), rho(N);
vc<bool> scanned(N);
FOR(v, N) mu[v] = v;
ll ans = 0;
for (auto&& e: G.edges) {
if (e.frm != e.to && mu[e.frm] == e.frm && mu[e.to] == e.to) {
mu[e.frm] = e.to, mu[e.to] = e.frm, ++ans;
}
}
auto odd = [&](int x) -> bool {
return mu[x] != x && phi[mu[x]] == mu[x] && mu[x] != x;
};
auto out_of_forest = [&](int x) -> bool {
return mu[x] != x && phi[mu[x]] == mu[x] && phi[x] == x;
};
auto P = [&](int x) -> vc<int> {
vc<int> P;
P.eb(x);
while (mu[x] != x) {
P.eb(mu[x]);
P.eb(phi[mu[x]]);
x = phi[mu[x]];
}
return P;
};
vc<bool> on_path(N);
while (1) {
FOR(v, N) phi[v] = rho[v] = v, scanned[v] = 0;
bool aug = 0;
while (1) {
bool upd = 0;
FOR(x, N) {
if (upd) break;
if (scanned[x] || odd(x)) continue;
for (auto&& e: G[x]) {
int y = e.to;
if (out_of_forest(y)) {
upd = 1;
// grow
phi[y] = x;
}
elif (rho[y] != rho[x] && !odd(y)) {
vc<int> F;
FOR(v, N) if (!out_of_forest(v)) F.eb(v);
upd = 1;
// augument OR shrink
vc<int> Px = P(x);
vc<int> Py = P(y);
if (Px.back() != Py.back()) {
aug = 1;
// augument
FOR(2) {
swap(Px, Py);
for (int i = 1; i < len(Px); i += 2) {
int v = Px[i];
mu[phi[v]] = v, mu[v] = phi[v];
}
}
mu[x] = y, mu[y] = x, ++ans;
break;
} else {
// shrink
int r = -1;
int Nx = len(Px), Ny = len(Py);
for (int i = 0; i < Nx; i += 2) {
int v = Px[i];
int j = i + Ny - Nx;
if (0 <= j && j < Ny && Py[j] == v && rho[v] == v) {
r = v;
break;
}
}
while (Px.back() != r) Px.pop_back();
while (Py.back() != r) Py.pop_back();
vc<int> change;
FOR(2) {
swap(Px, Py);
for (int i = 1; i < len(Px); i += 2) {
int v = Px[i];
if (rho[phi[v]] != r) change.eb(v);
}
}
for (auto&& v: change) phi[phi[v]] = v;
if (rho[x] != r) phi[x] = y;
if (rho[y] != r) phi[y] = x;
for (auto&& v: Px) on_path[v] = 1;
for (auto&& v: Py) on_path[v] = 1;
FOR(v, N) if (on_path[rho[v]]) { rho[v] = r; }
fill(all(on_path), 0);
}
}
}
scanned[x] = 1;
}
if (!upd || aug) break;
}
if (!aug) break;
}
FOR(v, N) if (mu[v] == v) mu[v] = -1;
return {ans, mu};
}
#line 2 "graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
static constexpr bool is_directed = directed;
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
#ifdef FASTIO
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
#endif
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed)
csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
#ifdef FASTIO
void debug() {
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
}
#endif
vc<int> new_idx;
vc<bool> used_e;
// G における頂点 V[i] が、新しいグラフで i になるようにする
// {G, es}
Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
if (len(new_idx) != N) new_idx.assign(N, -1);
if (len(used_e) != M) used_e.assign(M, 0);
int n = len(V);
FOR(i, n) new_idx[V[i]] = i;
Graph<T, directed> G(n);
vc<int> history;
FOR(i, n) {
for (auto&& e: (*this)[V[i]]) {
if (used_e[e.id]) continue;
int a = e.frm, b = e.to;
if (new_idx[a] != -1 && new_idx[b] != -1) {
history.eb(e.id);
used_e[e.id] = 1;
int eid = (keep_eid ? e.id : -1);
G.add(new_idx[a], new_idx[b], e.cost, eid);
}
}
}
FOR(i, n) new_idx[V[i]] = -1;
for (auto&& eid: history) used_e[eid] = 0;
G.build();
return G;
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 2 "graph/maximum_matching.hpp"
// return : (match size, match)
// match[v] : マッチング相手 OR 0
// O(N^3)
// 「組合せ最適化」第2版, アルゴリズム 10.2
template <typename GT>
pair<int, vc<int>> maximum_matching(const GT& G) {
const int N = G.N;
vc<int> mu(N), phi(N), rho(N);
vc<bool> scanned(N);
FOR(v, N) mu[v] = v;
ll ans = 0;
for (auto&& e: G.edges) {
if (e.frm != e.to && mu[e.frm] == e.frm && mu[e.to] == e.to) {
mu[e.frm] = e.to, mu[e.to] = e.frm, ++ans;
}
}
auto odd = [&](int x) -> bool {
return mu[x] != x && phi[mu[x]] == mu[x] && mu[x] != x;
};
auto out_of_forest = [&](int x) -> bool {
return mu[x] != x && phi[mu[x]] == mu[x] && phi[x] == x;
};
auto P = [&](int x) -> vc<int> {
vc<int> P;
P.eb(x);
while (mu[x] != x) {
P.eb(mu[x]);
P.eb(phi[mu[x]]);
x = phi[mu[x]];
}
return P;
};
vc<bool> on_path(N);
while (1) {
FOR(v, N) phi[v] = rho[v] = v, scanned[v] = 0;
bool aug = 0;
while (1) {
bool upd = 0;
FOR(x, N) {
if (upd) break;
if (scanned[x] || odd(x)) continue;
for (auto&& e: G[x]) {
int y = e.to;
if (out_of_forest(y)) {
upd = 1;
// grow
phi[y] = x;
}
elif (rho[y] != rho[x] && !odd(y)) {
vc<int> F;
FOR(v, N) if (!out_of_forest(v)) F.eb(v);
upd = 1;
// augument OR shrink
vc<int> Px = P(x);
vc<int> Py = P(y);
if (Px.back() != Py.back()) {
aug = 1;
// augument
FOR(2) {
swap(Px, Py);
for (int i = 1; i < len(Px); i += 2) {
int v = Px[i];
mu[phi[v]] = v, mu[v] = phi[v];
}
}
mu[x] = y, mu[y] = x, ++ans;
break;
} else {
// shrink
int r = -1;
int Nx = len(Px), Ny = len(Py);
for (int i = 0; i < Nx; i += 2) {
int v = Px[i];
int j = i + Ny - Nx;
if (0 <= j && j < Ny && Py[j] == v && rho[v] == v) {
r = v;
break;
}
}
while (Px.back() != r) Px.pop_back();
while (Py.back() != r) Py.pop_back();
vc<int> change;
FOR(2) {
swap(Px, Py);
for (int i = 1; i < len(Px); i += 2) {
int v = Px[i];
if (rho[phi[v]] != r) change.eb(v);
}
}
for (auto&& v: change) phi[phi[v]] = v;
if (rho[x] != r) phi[x] = y;
if (rho[y] != r) phi[y] = x;
for (auto&& v: Px) on_path[v] = 1;
for (auto&& v: Py) on_path[v] = 1;
FOR(v, N) if (on_path[rho[v]]) { rho[v] = r; }
fill(all(on_path), 0);
}
}
}
scanned[x] = 1;
}
if (!upd || aug) break;
}
if (!aug) break;
}
FOR(v, N) if (mu[v] == v) mu[v] = -1;
return {ans, mu};
}