This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "graph/find_path_through_specified.hpp"
#include "graph/base.hpp" #include "random/base.hpp" #include "nt/GF2.hpp" // (s,t) path であって need をすべて通るものの最小長さを求める. // s=t でもよい. 最初の 1 歩目も求める. // {length, first v}. なければ {-1,-1}. // O(2^K(N+M)L), L = shortest path length template <typename GT> pair<int, int> find_path_through_specified(GT& G, int s, int t, vc<int> need) { static_assert(!GT::is_directed); int N = G.N; assert(0 <= s && s < N && 0 <= t && t < N); using F = GF2<64>; // frm, to, wt vc<tuple<int, int, F>> edges; vc<int> S, T; for (auto& e: G.edges) { int a = e.frm, b = e.to; if ((a == s && b == t) || (a == t && b == s)) { if (need.empty()) return {1, t}; continue; } if (a == s || b == s) { S.eb(a ^ b ^ s); } if (a == t || b == t) { T.eb(a ^ b ^ t); } if (a != s && a != t && b != s && b != t) { F x = RNG_64(); edges.eb(a, b, x), edges.eb(b, a, x); } } int K = len(need); vc<int> get(N); FOR(k, K) get[need[k]] = 1 << k; int M = len(edges); vv(F, dp_e, 1 << K, M); vv(F, dp_v, 1 << K, N); for (auto& v: T) dp_v[get[v]][v] = RNG_64(); FOR(L, 1, N) { for (auto& v: S) { if (dp_v.back()[v] != F(0)) return {1 + L, v}; } vv(F, newdp_e, 1 << K, M); vv(F, newdp_v, 1 << K, N); FOR(s, 1 << K) { FOR(m, M) { auto [a, b, c] = edges[m]; int t = s | get[b]; if (get[b] && s == t) continue; F x = (dp_v[s][a] + dp_e[s][m ^ 1]) * c; newdp_e[t][m] += x, newdp_v[t][b] += x; } } swap(dp_v, newdp_v), swap(dp_e, newdp_e); } return {-1, -1}; }
#line 2 "ds/hashmap.hpp" // u64 -> Val template <typename Val> struct HashMap { // n は入れたいものの個数で ok HashMap(u32 n = 0) { build(n); } void build(u32 n) { u32 k = 8; while (k < n * 2) k *= 2; cap = k / 2, mask = k - 1; key.resize(k), val.resize(k), used.assign(k, 0); } // size を保ったまま. size=0 にするときは build すること. void clear() { used.assign(len(used), 0); cap = (mask + 1) / 2; } int size() { return len(used) / 2 - cap; } int index(const u64& k) { int i = 0; for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {} return i; } Val& operator[](const u64& k) { if (cap == 0) extend(); int i = index(k); if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; } return val[i]; } Val get(const u64& k, Val default_value) { int i = index(k); return (used[i] ? val[i] : default_value); } bool count(const u64& k) { int i = index(k); return used[i] && key[i] == k; } // f(key, val) template <typename F> void enumerate_all(F f) { FOR(i, len(used)) if (used[i]) f(key[i], val[i]); } private: u32 cap, mask; vc<u64> key; vc<Val> val; vc<bool> used; u64 hash(u64 x) { static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count(); x += FIXED_RANDOM; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return (x ^ (x >> 31)) & mask; } void extend() { vc<pair<u64, Val>> dat; dat.reserve(len(used) / 2 - cap); FOR(i, len(used)) { if (used[i]) dat.eb(key[i], val[i]); } build(2 * len(dat)); for (auto& [a, b]: dat) (*this)[a] = b; } }; #line 3 "graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { static constexpr bool is_directed = directed; int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void build(int n) { N = n, M = 0; prepared = 0; edges.clear(); indptr.clear(); csr_edges.clear(); vc_deg.clear(); vc_indeg.clear(); vc_outdeg.clear(); } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } #ifdef FASTIO // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } #endif void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } #ifdef FASTIO void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } #endif vc<int> new_idx; vc<bool> used_e; // G における頂点 V[i] が、新しいグラフで i になるようにする // {G, es} // sum(deg(v)) の計算量になっていて、 // 新しいグラフの n+m より大きい可能性があるので注意 Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) { if (len(new_idx) != N) new_idx.assign(N, -1); int n = len(V); FOR(i, n) new_idx[V[i]] = i; Graph<T, directed> G(n); vc<int> history; FOR(i, n) { for (auto&& e: (*this)[V[i]]) { if (len(used_e) <= e.id) used_e.resize(e.id + 1); if (used_e[e.id]) continue; int a = e.frm, b = e.to; if (new_idx[a] != -1 && new_idx[b] != -1) { history.eb(e.id); used_e[e.id] = 1; int eid = (keep_eid ? e.id : -1); G.add(new_idx[a], new_idx[b], e.cost, eid); } } } FOR(i, n) new_idx[V[i]] = -1; for (auto&& eid: history) used_e[eid] = 0; G.build(); return G; } Graph<T, true> to_directed_tree(int root = -1) { if (root == -1) root = 0; assert(!is_directed && prepared && M == N - 1); Graph<T, true> G1(N); vc<int> par(N, -1); auto dfs = [&](auto& dfs, int v) -> void { for (auto& e: (*this)[v]) { if (e.to == par[v]) continue; par[e.to] = v, dfs(dfs, e.to); } }; dfs(dfs, root); for (auto& e: edges) { int a = e.frm, b = e.to; if (par[a] == b) swap(a, b); assert(par[b] == a); G1.add(a, b, e.cost); } G1.build(); return G1; } HashMap<int> MP_FOR_EID; int get_eid(u64 a, u64 b) { if (len(MP_FOR_EID) == 0) { MP_FOR_EID.build(N - 1); for (auto& e: edges) { u64 a = e.frm, b = e.to; u64 k = to_eid_key(a, b); MP_FOR_EID[k] = e.id; } } return MP_FOR_EID.get(to_eid_key(a, b), -1); } u64 to_eid_key(u64 a, u64 b) { if (!directed && a > b) swap(a, b); return N * a + b; } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 2 "random/base.hpp" u64 RNG_64() { static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL; x_ ^= x_ << 7; return x_ ^= x_ >> 9; } u64 RNG(u64 lim) { return RNG_64() % lim; } ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); } #line 1 "nt/GF2.hpp" #include <emmintrin.h> #include <smmintrin.h> #include <wmmintrin.h> __attribute__((target("pclmul"))) inline __m128i myclmul(const __m128i &a, const __m128i &b) { return _mm_clmulepi64_si128(a, b, 0); } // 2^n 元体 template <int K> struct GF2 { // https://oeis.org/A344141 // irreducible poly x^K + ... static constexpr int POLY[65] = {0, 0, 3, 3, 3, 5, 3, 3, 27, 3, 9, 5, 9, 27, 33, 3, 43, 9, 9, 39, 9, 5, 3, 33, 27, 9, 27, 39, 3, 5, 3, 9, 141, 75, 27, 5, 53, 63, 99, 17, 57, 9, 39, 89, 33, 27, 3, 33, 45, 113, 29, 75, 9, 71, 125, 71, 149, 17, 99, 123, 3, 39, 105, 3, 27}; static constexpr u64 mask() { return u64(-1) >> (64 - K); } __attribute__((target("sse4.2"))) static u64 mul(u64 a, u64 b) { static bool prepared = 0; static u64 MEMO[8][65536]; if (!prepared) { prepared = 1; vc<u64> tmp(128); tmp[0] = 1; FOR(i, 127) { tmp[i + 1] = tmp[i] << 1; if (tmp[i] >> (K - 1) & 1) { tmp[i + 1] ^= POLY[K]; tmp[i + 1] &= mask(); } } FOR(k, 8) { MEMO[k][0] = 0; FOR(i, 16) { FOR(s, 1 << i) { MEMO[k][s | 1 << i] = MEMO[k][s] ^ tmp[16 * k + i]; } } } } const __m128i a_ = _mm_set_epi64x(0, a); const __m128i b_ = _mm_set_epi64x(0, b); const __m128i c_ = myclmul(a_, b_); u64 lo = _mm_extract_epi64(c_, 0); u64 hi = _mm_extract_epi64(c_, 1); u64 x = 0; x ^= MEMO[0][lo & 65535]; x ^= MEMO[1][(lo >> 16) & 65535]; x ^= MEMO[2][(lo >> 32) & 65535]; x ^= MEMO[3][(lo >> 48) & 65535]; x ^= MEMO[4][hi & 65535]; x ^= MEMO[5][(hi >> 16) & 65535]; x ^= MEMO[6][(hi >> 32) & 65535]; x ^= MEMO[7][(hi >> 48) & 65535]; return x; } u64 val; constexpr GF2(const u64 val = 0) noexcept : val(val & mask()) {} bool operator<(const GF2 &other) const { return val < other.val; } // To use std::map GF2 &operator+=(const GF2 &p) { val ^= p.val; return *this; } GF2 &operator-=(const GF2 &p) { val ^= p.val; return *this; } GF2 &operator*=(const GF2 &p) { val = mul(val, p.val); return *this; } GF2 &operator/=(const GF2 &p) { *this *= p.inverse(); return *this; } GF2 operator-() const { return GF2(-val); } GF2 operator+(const GF2 &p) const { return GF2(*this) += p; } GF2 operator-(const GF2 &p) const { return GF2(*this) -= p; } GF2 operator*(const GF2 &p) const { return GF2(*this) *= p; } GF2 operator/(const GF2 &p) const { return GF2(*this) /= p; } bool operator==(const GF2 &p) const { return val == p.val; } bool operator!=(const GF2 &p) const { return val != p.val; } GF2 inverse() const { return pow((u64(1) << K) - 2); } GF2 pow(u64 n) const { GF2 ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } }; #ifdef FASTIO template <int K> void rd(GF2<K> &x) { fastio::rd(x.val); x &= GF2<K>::mask; } template <int K> void wt(GF2<K> x) { fastio::wt(x.val); } #endif #line 4 "graph/find_path_through_specified.hpp" // (s,t) path であって need をすべて通るものの最小長さを求める. // s=t でもよい. 最初の 1 歩目も求める. // {length, first v}. なければ {-1,-1}. // O(2^K(N+M)L), L = shortest path length template <typename GT> pair<int, int> find_path_through_specified(GT& G, int s, int t, vc<int> need) { static_assert(!GT::is_directed); int N = G.N; assert(0 <= s && s < N && 0 <= t && t < N); using F = GF2<64>; // frm, to, wt vc<tuple<int, int, F>> edges; vc<int> S, T; for (auto& e: G.edges) { int a = e.frm, b = e.to; if ((a == s && b == t) || (a == t && b == s)) { if (need.empty()) return {1, t}; continue; } if (a == s || b == s) { S.eb(a ^ b ^ s); } if (a == t || b == t) { T.eb(a ^ b ^ t); } if (a != s && a != t && b != s && b != t) { F x = RNG_64(); edges.eb(a, b, x), edges.eb(b, a, x); } } int K = len(need); vc<int> get(N); FOR(k, K) get[need[k]] = 1 << k; int M = len(edges); vv(F, dp_e, 1 << K, M); vv(F, dp_v, 1 << K, N); for (auto& v: T) dp_v[get[v]][v] = RNG_64(); FOR(L, 1, N) { for (auto& v: S) { if (dp_v.back()[v] != F(0)) return {1 + L, v}; } vv(F, newdp_e, 1 << K, M); vv(F, newdp_v, 1 << K, N); FOR(s, 1 << K) { FOR(m, M) { auto [a, b, c] = edges[m]; int t = s | get[b]; if (get[b] && s == t) continue; F x = (dp_v[s][a] + dp_e[s][m ^ 1]) * c; newdp_e[t][m] += x, newdp_v[t][b] += x; } } swap(dp_v, newdp_v), swap(dp_e, newdp_e); } return {-1, -1}; }