This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/find_nontransitive_triple.hpp"
#pragma once
#include "graph/base.hpp"
// ab, bc 辺はあるが ac 辺はないような 3 つ組 (a,b,c) を探す。
// なければ {-1,-1,-1}
// 不可能:完全グラフ, 辺が全部独立
// example: https://codeforces.com/contest/967/problem/F
template <typename Graph>
tuple<int, int, int> find_nontransitive_triple(Graph& G) {
int N = G.N;
assert(G.is_prepared());
assert(!G.is_directed());
vc<int> done(N);
vc<int> que;
FOR(root, N) {
if (done[root]) continue;
que = {root};
int p = 0;
while (p < len(que)) {
int v = que[p++];
done[v] = 2;
ll s = 0;
for (auto&& e: G[v]) {
int to = e.to;
if (done[to] == 0) {
done[to] = 1;
que.eb(to);
}
elif (done[to] == 2) { ++s; }
}
if (s == p - 1) continue;
assert(p >= 3);
int c = v;
int a = -1;
int b = -1;
for (auto&& e: G[v]) done[e.to] = 0;
FOR(i, p - 1) {
int x = que[i];
if (done[x] == 2) a = x;
if (done[x] == 0) b = x;
}
assert(a != -1);
assert(b != -1);
return {a, b, c};
}
}
return {-1, -1, -1};
}
#line 2 "graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
static constexpr bool is_directed = directed;
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
#ifdef FASTIO
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
#endif
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed)
csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
#ifdef FASTIO
void debug() {
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
}
#endif
vc<int> new_idx;
vc<bool> used_e;
// G における頂点 V[i] が、新しいグラフで i になるようにする
// {G, es}
Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
if (len(new_idx) != N) new_idx.assign(N, -1);
if (len(used_e) != M) used_e.assign(M, 0);
int n = len(V);
FOR(i, n) new_idx[V[i]] = i;
Graph<T, directed> G(n);
vc<int> history;
FOR(i, n) {
for (auto&& e: (*this)[V[i]]) {
if (used_e[e.id]) continue;
int a = e.frm, b = e.to;
if (new_idx[a] != -1 && new_idx[b] != -1) {
history.eb(e.id);
used_e[e.id] = 1;
int eid = (keep_eid ? e.id : -1);
G.add(new_idx[a], new_idx[b], e.cost, eid);
}
}
}
FOR(i, n) new_idx[V[i]] = -1;
for (auto&& eid: history) used_e[eid] = 0;
G.build();
return G;
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 3 "graph/find_nontransitive_triple.hpp"
// ab, bc 辺はあるが ac 辺はないような 3 つ組 (a,b,c) を探す。
// なければ {-1,-1,-1}
// 不可能:完全グラフ, 辺が全部独立
// example: https://codeforces.com/contest/967/problem/F
template <typename Graph>
tuple<int, int, int> find_nontransitive_triple(Graph& G) {
int N = G.N;
assert(G.is_prepared());
assert(!G.is_directed());
vc<int> done(N);
vc<int> que;
FOR(root, N) {
if (done[root]) continue;
que = {root};
int p = 0;
while (p < len(que)) {
int v = que[p++];
done[v] = 2;
ll s = 0;
for (auto&& e: G[v]) {
int to = e.to;
if (done[to] == 0) {
done[to] = 1;
que.eb(to);
}
elif (done[to] == 2) { ++s; }
}
if (s == p - 1) continue;
assert(p >= 3);
int c = v;
int a = -1;
int b = -1;
for (auto&& e: G[v]) done[e.to] = 0;
FOR(i, p - 1) {
int x = que[i];
if (done[x] == 2) a = x;
if (done[x] == 0) b = x;
}
assert(a != -1);
assert(b != -1);
return {a, b, c};
}
}
return {-1, -1, -1};
}