This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/find_cycle.hpp"
#include "graph/base.hpp"
// {vs, es} or empty. minimal.
template <typename GT>
pair<vc<int>, vc<int>> find_cycle_directed(GT& G) {
static_assert(GT::is_directed);
assert(G.is_prepared());
int N = G.N;
vc<int> used(N);
vc<pair<int, int>> par(N);
vector<int> es, vs;
auto dfs = [&](auto self, int v) -> void {
used[v] = 1;
for (auto&& e: G[v]) {
if (len(es)) return;
if (!used[e.to]) {
par[e.to] = {v, e.id};
self(self, e.to);
}
elif (used[e.to] == 1) {
es = {e.id};
int cur = v;
while (cur != e.to) {
es.eb(par[cur].se);
cur = par[cur].fi;
}
reverse(all(es));
return;
}
}
used[v] = 2;
};
FOR(v, N) if (!used[v]) dfs(dfs, v);
if (es.empty()) return {vs, es};
// minimal cycle
vc<int> nxt(N, -1);
for (auto&& eid: es) nxt[G.edges[eid].frm] = eid;
for (auto&& e: G.edges) {
int a = e.frm, b = e.to;
if (nxt[a] == -1 || nxt[b] == -1) continue;
if (G.edges[nxt[a]].to == e.to) continue;
while (a != b) {
int t = G.edges[nxt[a]].to;
nxt[a] = -1;
a = t;
}
nxt[e.frm] = e.id;
}
es.clear();
FOR(v, N) {
if (nxt[v] == -1) continue;
int x = v;
while (1) {
vs.eb(x);
es.eb(nxt[x]);
x = G.edges[nxt[x]].to;
if (x == v) break;
}
break;
}
return {vs, es};
}
// {vs, es} or empty. minimal.
template <typename GT>
pair<vc<int>, vc<int>> find_cycle_undirected(GT& G) {
assert(!GT::is_directed);
assert(G.is_prepared());
const int N = G.N;
const int M = G.M;
vc<int> dep(N, -1);
vc<bool> used_e(M);
vc<int> par(N, -1); // edge idx
auto dfs = [&](auto& dfs, int v, int d) -> int {
dep[v] = d;
for (auto&& e: G[v]) {
if (used_e[e.id]) continue;
if (dep[e.to] != -1) return v;
used_e[e.id] = 1;
par[e.to] = e.id;
int res = dfs(dfs, e.to, d + 1);
if (res != -1) return res;
}
return -1;
};
vc<int> vs, es;
FOR(v, N) {
if (dep[v] != -1) continue;
// w has back edge
int w = dfs(dfs, v, 0);
if (w == -1) continue;
int b = -1, back_e = -1;
while (1) {
for (auto&& e: G[w]) {
if (used_e[e.id]) continue;
if (dep[e.to] > dep[w] || dep[e.to] == -1) continue;
b = w, back_e = e.id;
}
if (w == v) break;
auto& e = G.edges[par[w]];
w = e.frm + e.to - w;
}
int a = G.edges[back_e].frm + G.edges[back_e].to - b;
es.eb(back_e), vs.eb(a);
while (1) {
int x = vs.back();
auto& e = G.edges[es.back()];
int y = e.frm + e.to - x;
if (y == a) break;
vs.eb(y);
es.eb(par[y]);
}
return {vs, es};
}
return {vs, es};
}
#line 2 "graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
static constexpr bool is_directed = directed;
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
#ifdef FASTIO
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
#endif
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed)
csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
#ifdef FASTIO
void debug() {
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
}
#endif
vc<int> new_idx;
vc<bool> used_e;
// G における頂点 V[i] が、新しいグラフで i になるようにする
// {G, es}
Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
if (len(new_idx) != N) new_idx.assign(N, -1);
if (len(used_e) != M) used_e.assign(M, 0);
int n = len(V);
FOR(i, n) new_idx[V[i]] = i;
Graph<T, directed> G(n);
vc<int> history;
FOR(i, n) {
for (auto&& e: (*this)[V[i]]) {
if (used_e[e.id]) continue;
int a = e.frm, b = e.to;
if (new_idx[a] != -1 && new_idx[b] != -1) {
history.eb(e.id);
used_e[e.id] = 1;
int eid = (keep_eid ? e.id : -1);
G.add(new_idx[a], new_idx[b], e.cost, eid);
}
}
}
FOR(i, n) new_idx[V[i]] = -1;
for (auto&& eid: history) used_e[eid] = 0;
G.build();
return G;
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 2 "graph/find_cycle.hpp"
// {vs, es} or empty. minimal.
template <typename GT>
pair<vc<int>, vc<int>> find_cycle_directed(GT& G) {
static_assert(GT::is_directed);
assert(G.is_prepared());
int N = G.N;
vc<int> used(N);
vc<pair<int, int>> par(N);
vector<int> es, vs;
auto dfs = [&](auto self, int v) -> void {
used[v] = 1;
for (auto&& e: G[v]) {
if (len(es)) return;
if (!used[e.to]) {
par[e.to] = {v, e.id};
self(self, e.to);
}
elif (used[e.to] == 1) {
es = {e.id};
int cur = v;
while (cur != e.to) {
es.eb(par[cur].se);
cur = par[cur].fi;
}
reverse(all(es));
return;
}
}
used[v] = 2;
};
FOR(v, N) if (!used[v]) dfs(dfs, v);
if (es.empty()) return {vs, es};
// minimal cycle
vc<int> nxt(N, -1);
for (auto&& eid: es) nxt[G.edges[eid].frm] = eid;
for (auto&& e: G.edges) {
int a = e.frm, b = e.to;
if (nxt[a] == -1 || nxt[b] == -1) continue;
if (G.edges[nxt[a]].to == e.to) continue;
while (a != b) {
int t = G.edges[nxt[a]].to;
nxt[a] = -1;
a = t;
}
nxt[e.frm] = e.id;
}
es.clear();
FOR(v, N) {
if (nxt[v] == -1) continue;
int x = v;
while (1) {
vs.eb(x);
es.eb(nxt[x]);
x = G.edges[nxt[x]].to;
if (x == v) break;
}
break;
}
return {vs, es};
}
// {vs, es} or empty. minimal.
template <typename GT>
pair<vc<int>, vc<int>> find_cycle_undirected(GT& G) {
assert(!GT::is_directed);
assert(G.is_prepared());
const int N = G.N;
const int M = G.M;
vc<int> dep(N, -1);
vc<bool> used_e(M);
vc<int> par(N, -1); // edge idx
auto dfs = [&](auto& dfs, int v, int d) -> int {
dep[v] = d;
for (auto&& e: G[v]) {
if (used_e[e.id]) continue;
if (dep[e.to] != -1) return v;
used_e[e.id] = 1;
par[e.to] = e.id;
int res = dfs(dfs, e.to, d + 1);
if (res != -1) return res;
}
return -1;
};
vc<int> vs, es;
FOR(v, N) {
if (dep[v] != -1) continue;
// w has back edge
int w = dfs(dfs, v, 0);
if (w == -1) continue;
int b = -1, back_e = -1;
while (1) {
for (auto&& e: G[w]) {
if (used_e[e.id]) continue;
if (dep[e.to] > dep[w] || dep[e.to] == -1) continue;
b = w, back_e = e.id;
}
if (w == v) break;
auto& e = G.edges[par[w]];
w = e.frm + e.to - w;
}
int a = G.edges[back_e].frm + G.edges[back_e].to - b;
es.eb(back_e), vs.eb(a);
while (1) {
int x = vs.back();
auto& e = G.edges[es.back()];
int y = e.frm + e.to - x;
if (y == a) break;
vs.eb(y);
es.eb(par[y]);
}
return {vs, es};
}
return {vs, es};
}