This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/ds/lazy_tree_monoid.hpp"
#include "alg/monoid/monoid_reverse.hpp"
#include "ds/segtree/lazy_segtree.hpp"
#include "graph/tree.hpp"
template <typename TREE, typename ActedMonoid, bool edge>
struct Lazy_Tree_Monoid {
using MX = typename ActedMonoid::Monoid_X;
using MA = typename ActedMonoid::Monoid_A;
using X = typename MX::value_type;
using A = typename MA::value_type;
struct RevAM {
using Monoid_X = Monoid_Reverse<MX>;
using Monoid_A = MA;
using X = typename Monoid_X::value_type;
using A = typename Monoid_A::value_type;
static X act(const X &x, const A &a, const ll &size) { return ActedMonoid::act(x, a, size); }
};
TREE &tree;
int N;
Lazy_SegTree<ActedMonoid> seg;
Lazy_SegTree<RevAM> seg_r;
Lazy_Tree_Monoid(TREE &tree) : tree(tree), N(tree.N) {
build([](int i) -> X { return MX::unit(); });
}
Lazy_Tree_Monoid(TREE &tree, vc<X> &dat) : tree(tree), N(tree.N) {
build([&](int i) -> X { return dat[i]; });
}
template <typename F>
Lazy_Tree_Monoid(TREE &tree, F f) : tree(tree), N(tree.N) {
build(f);
}
template <typename F>
void build(F f) {
if (!edge) {
auto f_v = [&](int i) -> X { return f(tree.V[i]); };
seg.build(N, f_v);
if constexpr (!MX::commute) { seg_r.build(N, f_v); }
} else {
auto f_e = [&](int i) -> X { return (i == 0 ? MX::unit() : f(tree.v_to_e(tree.V[i]))); };
seg.build(N, f_e);
if constexpr (!MX::commute) { seg_r.build(N, f_e); }
}
}
void set(int i, X x) {
if constexpr (edge) i = tree.e_to_v(i);
i = tree.LID[i];
seg.set(i, x);
if constexpr (!MX::commute) { seg_r.set(i, x); }
}
X get(int v) { return seg.get(tree.LID[v]); }
vc<X> get_all() {
vc<X> dat = seg.get_all();
if (!edge) {
vc<X> res(N);
FOR(v, N) res[v] = dat[tree.LID[v]];
return res;
} else {
vc<X> res(N - 1);
FOR(i, N - 1) { res[i] = dat[tree.LID[tree.e_to_v(i)]]; }
return res;
}
}
X prod_path(int u, int v) {
auto pd = tree.get_path_decomposition(u, v, edge);
X val = MX::unit();
for (auto &&[a, b]: pd) { val = MX::op(val, get_prod(a, b)); }
return val;
}
X prod_subtree(int u, int root = -1) {
if (root == u) return prod_all();
if (root == -1 || tree.in_subtree(u, root)) {
int l = tree.LID[u], r = tree.RID[u];
return seg.prod(l + edge, r);
}
assert(!edge); // さぼり
u = tree.jump(u, root, 1);
int L = tree.LID[u], R = tree.RID[u];
return MX::op(seg.prod(0, L), seg.prod(R, N));
}
X prod_all() {
static_assert(MX::commute);
return seg.prod_all();
}
void apply_path(int u, int v, A a) {
auto pd = tree.get_path_decomposition(u, v, edge);
for (auto &&[x, y]: pd) {
int l = min(x, y), r = max(x, y);
seg.apply(l, r + 1, a);
if constexpr (!MX::commute) { seg_r.apply(l, r + 1, a); }
}
}
void apply_subtree(int u, A a) {
int l = tree.LID[u], r = tree.RID[u];
seg.apply(l + edge, r, a);
if constexpr (!MX::commute) { seg_r.apply(l + edge, r, a); }
}
void apply_outtree(int u, A a) {
int l = tree.LID[u], r = tree.RID[u];
seg.apply(0 + edge, l + edge, a);
seg.apply(r, N, a);
if constexpr (!MX::commute) {
seg_r.apply(0 + edge, l + edge, a);
seg_r.apply(r, N, a);
}
}
template <class F>
int max_path(F check, int u, int v) {
if constexpr (edge) return max_path_edge(check, u, v);
if (!check(prod_path(u, u))) return -1;
auto pd = tree.get_path_decomposition(u, v, edge);
X val = MX::unit();
for (auto &&[a, b]: pd) {
X x = get_prod(a, b);
if (check(MX::op(val, x))) {
val = MX::op(val, x);
u = (tree.V[b]);
continue;
}
auto check_tmp = [&](X x) -> bool { return check(MX::op(val, x)); };
if (a <= b) {
// 下り
auto i = seg.max_right(check_tmp, a);
return (i == a ? u : tree.V[i - 1]);
} else {
// 上り
int i = 0;
if constexpr (MX::commute) i = seg.min_left(check_tmp, a + 1);
if constexpr (!MX::commute) i = seg_r.min_left(check_tmp, a + 1);
if (i == a + 1) return u;
return tree.V[i];
}
}
return v;
}
// closed range [a,b] を heavy path の形式に応じて
inline X get_prod(int a, int b) {
if constexpr (MX::commute) return (a <= b ? seg.prod(a, b + 1) : seg.prod(b, a + 1));
return (a <= b ? seg.prod(a, b + 1) : seg_r.prod(b, a + 1));
}
private:
template <class F>
int max_path_edge(F check, int u, int v) {
static_assert(edge);
if (!check(MX::unit())) return -1;
int lca = tree.lca(u, v);
auto pd = tree.get_path_decomposition(u, lca, edge);
X val = MX::unit();
// climb
for (auto &&[a, b]: pd) {
assert(a >= b);
X x = get_prod(a, b);
if (check(MX::op(val, x))) {
val = MX::op(val, x);
u = (tree.parent[tree.V[b]]);
continue;
}
auto check_tmp = [&](X x) -> bool { return check(MX::op(val, x)); };
int i = 0;
if constexpr (MX::commute) i = seg.min_left(check_tmp, a + 1);
if constexpr (!MX::commute) i = seg_r.min_left(check_tmp, a + 1);
if (i == a + 1) return u;
return tree.parent[tree.V[i]];
}
// down
pd = tree.get_path_decomposition(lca, v, edge);
for (auto &&[a, b]: pd) {
assert(a <= b);
X x = get_prod(a, b);
if (check(MX::op(val, x))) {
val = MX::op(val, x);
u = (tree.V[b]);
continue;
}
auto check_tmp = [&](X x) -> bool { return check(MX::op(val, x)); };
auto i = seg.max_right(check_tmp, a);
return (i == a ? u : tree.V[i - 1]);
}
return v;
}
};
#line 2 "alg/monoid/monoid_reverse.hpp"
template <class Monoid>
struct Monoid_Reverse {
using value_type = typename Monoid::value_type;
using X = value_type;
static constexpr X op(const X &x, const X &y) { return Monoid::op(y, x); }
static constexpr X unit() { return Monoid::unit(); }
static const bool commute = Monoid::commute;
};
#line 2 "ds/segtree/lazy_segtree.hpp"
template <typename ActedMonoid>
struct Lazy_SegTree {
using AM = ActedMonoid;
using MX = typename AM::Monoid_X;
using MA = typename AM::Monoid_A;
using X = typename MX::value_type;
using A = typename MA::value_type;
int n, log, size;
vc<X> dat;
vc<A> laz;
Lazy_SegTree() {}
Lazy_SegTree(int n) { build(n); }
template <typename F>
Lazy_SegTree(int n, F f) {
build(n, f);
}
Lazy_SegTree(const vc<X>& v) { build(v); }
void build(int m) {
build(m, [](int i) -> X { return MX::unit(); });
}
void build(const vc<X>& v) {
build(len(v), [&](int i) -> X { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m, log = 1;
while ((1 << log) < n) ++log;
size = 1 << log;
dat.assign(size << 1, MX::unit());
laz.assign(size, MA::unit());
FOR(i, n) dat[size + i] = f(i);
FOR_R(i, 1, size) update(i);
}
void update(int k) { dat[k] = MX::op(dat[2 * k], dat[2 * k + 1]); }
void set(int p, X x) {
assert(0 <= p && p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
dat[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
void multiply(int p, const X& x) {
assert(0 <= p && p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
dat[p] = MX::op(dat[p], x);
for (int i = 1; i <= log; i++) update(p >> i);
}
X get(int p) {
assert(0 <= p && p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return dat[p];
}
vc<X> get_all() {
FOR(k, 1, size) { push(k); }
return {dat.begin() + size, dat.begin() + size + n};
}
X prod(int l, int r) {
assert(0 <= l && l <= r && r <= n);
if (l == r) return MX::unit();
l += size, r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
X xl = MX::unit(), xr = MX::unit();
while (l < r) {
if (l & 1) xl = MX::op(xl, dat[l++]);
if (r & 1) xr = MX::op(dat[--r], xr);
l >>= 1, r >>= 1;
}
return MX::op(xl, xr);
}
X prod_all() { return dat[1]; }
void apply(int l, int r, A a) {
assert(0 <= l && l <= r && r <= n);
if (l == r) return;
l += size, r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) apply_at(l++, a);
if (r & 1) apply_at(--r, a);
l >>= 1, r >>= 1;
}
l = l2, r = r2;
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <typename F>
int max_right(const F check, int l) {
assert(0 <= l && l <= n);
assert(check(MX::unit()));
if (l == n) return n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
X sm = MX::unit();
do {
while (l % 2 == 0) l >>= 1;
if (!check(MX::op(sm, dat[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (check(MX::op(sm, dat[l]))) { sm = MX::op(sm, dat[l++]); }
}
return l - size;
}
sm = MX::op(sm, dat[l++]);
} while ((l & -l) != l);
return n;
}
template <typename F>
int min_left(const F check, int r) {
assert(0 <= r && r <= n);
assert(check(MX::unit()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
X sm = MX::unit();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!check(MX::op(dat[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (check(MX::op(dat[r], sm))) { sm = MX::op(dat[r--], sm); }
}
return r + 1 - size;
}
sm = MX::op(dat[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
void apply_at(int k, A a) {
ll sz = 1 << (log - topbit(k));
dat[k] = AM::act(dat[k], a, sz);
if (k < size) laz[k] = MA::op(laz[k], a);
}
void push(int k) {
if (laz[k] == MA::unit()) return;
apply_at(2 * k, laz[k]), apply_at(2 * k + 1, laz[k]);
laz[k] = MA::unit();
}
};
#line 2 "graph/tree.hpp"
#line 2 "ds/hashmap.hpp"
// u64 -> Val
template <typename Val>
struct HashMap {
// n は入れたいものの個数で ok
HashMap(u32 n = 0) { build(n); }
void build(u32 n) {
u32 k = 8;
while (k < n * 2) k *= 2;
cap = k / 2, mask = k - 1;
key.resize(k), val.resize(k), used.assign(k, 0);
}
// size を保ったまま. size=0 にするときは build すること.
void clear() {
used.assign(len(used), 0);
cap = (mask + 1) / 2;
}
int size() { return len(used) / 2 - cap; }
int index(const u64& k) {
int i = 0;
for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {}
return i;
}
Val& operator[](const u64& k) {
if (cap == 0) extend();
int i = index(k);
if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; }
return val[i];
}
Val get(const u64& k, Val default_value) {
int i = index(k);
return (used[i] ? val[i] : default_value);
}
bool count(const u64& k) {
int i = index(k);
return used[i] && key[i] == k;
}
// f(key, val)
template <typename F>
void enumerate_all(F f) {
FOR(i, len(used)) if (used[i]) f(key[i], val[i]);
}
private:
u32 cap, mask;
vc<u64> key;
vc<Val> val;
vc<bool> used;
u64 hash(u64 x) {
static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count();
x += FIXED_RANDOM;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return (x ^ (x >> 31)) & mask;
}
void extend() {
vc<pair<u64, Val>> dat;
dat.reserve(len(used) / 2 - cap);
FOR(i, len(used)) {
if (used[i]) dat.eb(key[i], val[i]);
}
build(2 * len(dat));
for (auto& [a, b]: dat) (*this)[a] = b;
}
};
#line 3 "graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
static constexpr bool is_directed = directed;
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
#ifdef FASTIO
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
#endif
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
#ifdef FASTIO
void debug() {
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
}
#endif
vc<int> new_idx;
vc<bool> used_e;
// G における頂点 V[i] が、新しいグラフで i になるようにする
// {G, es}
// sum(deg(v)) の計算量になっていて、
// 新しいグラフの n+m より大きい可能性があるので注意
Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
if (len(new_idx) != N) new_idx.assign(N, -1);
int n = len(V);
FOR(i, n) new_idx[V[i]] = i;
Graph<T, directed> G(n);
vc<int> history;
FOR(i, n) {
for (auto&& e: (*this)[V[i]]) {
if (len(used_e) <= e.id) used_e.resize(e.id + 1);
if (used_e[e.id]) continue;
int a = e.frm, b = e.to;
if (new_idx[a] != -1 && new_idx[b] != -1) {
history.eb(e.id);
used_e[e.id] = 1;
int eid = (keep_eid ? e.id : -1);
G.add(new_idx[a], new_idx[b], e.cost, eid);
}
}
}
FOR(i, n) new_idx[V[i]] = -1;
for (auto&& eid: history) used_e[eid] = 0;
G.build();
return G;
}
Graph<T, true> to_directed_tree(int root = -1) {
if (root == -1) root = 0;
assert(!is_directed && prepared && M == N - 1);
Graph<T, true> G1(N);
vc<int> par(N, -1);
auto dfs = [&](auto& dfs, int v) -> void {
for (auto& e: (*this)[v]) {
if (e.to == par[v]) continue;
par[e.to] = v, dfs(dfs, e.to);
}
};
dfs(dfs, root);
for (auto& e: edges) {
int a = e.frm, b = e.to;
if (par[a] == b) swap(a, b);
assert(par[b] == a);
G1.add(a, b, e.cost);
}
G1.build();
return G1;
}
HashMap<int> MP_FOR_EID;
int get_eid(u64 a, u64 b) {
if (len(MP_FOR_EID) == 0) {
MP_FOR_EID.build(N - 1);
for (auto& e: edges) {
u64 a = e.frm, b = e.to;
u64 k = to_eid_key(a, b);
MP_FOR_EID[k] = e.id;
}
}
return MP_FOR_EID.get(to_eid_key(a, b), -1);
}
u64 to_eid_key(u64 a, u64 b) {
if (!directed && a > b) swap(a, b);
return N * a + b;
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 4 "graph/tree.hpp"
// HLD euler tour をとっていろいろ。
template <typename GT>
struct Tree {
using Graph_type = GT;
GT &G;
using WT = typename GT::cost_type;
int N;
vector<int> LID, RID, head, V, parent, VtoE;
vc<int> depth;
vc<WT> depth_weighted;
Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); }
void build(int r = 0, bool hld = 1) {
if (r == -1) return; // build を遅延したいとき
N = G.N;
LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r);
V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1);
depth.assign(N, -1), depth_weighted.assign(N, 0);
assert(G.is_prepared());
int t1 = 0;
dfs_sz(r, -1, hld);
dfs_hld(r, t1);
}
void dfs_sz(int v, int p, bool hld) {
auto &sz = RID;
parent[v] = p;
depth[v] = (p == -1 ? 0 : depth[p] + 1);
sz[v] = 1;
int l = G.indptr[v], r = G.indptr[v + 1];
auto &csr = G.csr_edges;
// 使う辺があれば先頭にする
for (int i = r - 2; i >= l; --i) {
if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]);
}
int hld_sz = 0;
for (int i = l; i < r; ++i) {
auto e = csr[i];
if (depth[e.to] != -1) continue;
depth_weighted[e.to] = depth_weighted[v] + e.cost;
VtoE[e.to] = e.id;
dfs_sz(e.to, v, hld);
sz[v] += sz[e.to];
if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); }
}
}
void dfs_hld(int v, int ×) {
LID[v] = times++;
RID[v] += LID[v];
V[LID[v]] = v;
bool heavy = true;
for (auto &&e: G[v]) {
if (depth[e.to] <= depth[v]) continue;
head[e.to] = (heavy ? head[v] : e.to);
heavy = false;
dfs_hld(e.to, times);
}
}
vc<int> heavy_path_at(int v) {
vc<int> P = {v};
while (1) {
int a = P.back();
for (auto &&e: G[a]) {
if (e.to != parent[a] && head[e.to] == v) {
P.eb(e.to);
break;
}
}
if (P.back() == a) break;
}
return P;
}
int heavy_child(int v) {
int k = LID[v] + 1;
if (k == N) return -1;
int w = V[k];
return (parent[w] == v ? w : -1);
}
vc<int> memo_tail;
int tail(int v) {
if (memo_tail.empty()) {
memo_tail.assign(N, -1);
FOR_R(i, N) {
int v = V[i];
int w = heavy_child(v);
memo_tail[v] = (w == -1 ? v : memo_tail[w]);
}
}
return memo_tail[v];
}
int e_to_v(int eid) {
auto e = G.edges[eid];
return (parent[e.frm] == e.to ? e.frm : e.to);
}
int v_to_e(int v) { return VtoE[v]; }
int get_eid(int u, int v) {
if (parent[u] != v) swap(u, v);
assert(parent[u] == v);
return VtoE[u];
}
int ELID(int v) { return 2 * LID[v] - depth[v]; }
int ERID(int v) { return 2 * RID[v] - depth[v] - 1; }
// 目標地点へ進む個数が k
int LA(int v, int k) {
assert(k <= depth[v]);
while (1) {
int u = head[v];
if (LID[v] - k >= LID[u]) return V[LID[v] - k];
k -= LID[v] - LID[u] + 1;
v = parent[u];
}
}
int la(int u, int v) { return LA(u, v); }
int LCA(int u, int v) {
for (;; v = parent[head[v]]) {
if (LID[u] > LID[v]) swap(u, v);
if (head[u] == head[v]) return u;
}
}
int meet(int a, int b, int c) { return LCA(a, b) ^ LCA(a, c) ^ LCA(b, c); }
int lca(int u, int v) { return LCA(u, v); }
int subtree_size(int v, int root = -1) {
if (root == -1) return RID[v] - LID[v];
if (v == root) return N;
int x = jump(v, root, 1);
if (in_subtree(v, x)) return RID[v] - LID[v];
return N - RID[x] + LID[x];
}
int dist(int a, int b) {
int c = LCA(a, b);
return depth[a] + depth[b] - 2 * depth[c];
}
WT dist_weighted(int a, int b) {
int c = LCA(a, b);
return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c];
}
// a is in b
bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; }
int jump(int a, int b, ll k) {
if (k == 1) {
if (a == b) return -1;
return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]);
}
int c = LCA(a, b);
int d_ac = depth[a] - depth[c];
int d_bc = depth[b] - depth[c];
if (k > d_ac + d_bc) return -1;
if (k <= d_ac) return LA(a, k);
return LA(b, d_ac + d_bc - k);
}
vc<int> collect_child(int v) {
vc<int> res;
for (auto &&e: G[v])
if (e.to != parent[v]) res.eb(e.to);
return res;
}
vc<int> collect_light(int v) {
vc<int> res;
bool skip = true;
for (auto &&e: G[v])
if (e.to != parent[v]) {
if (!skip) res.eb(e.to);
skip = false;
}
return res;
}
vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) {
// [始点, 終点] の"閉"区間列。
vc<pair<int, int>> up, down;
while (1) {
if (head[u] == head[v]) break;
if (LID[u] < LID[v]) {
down.eb(LID[head[v]], LID[v]);
v = parent[head[v]];
} else {
up.eb(LID[u], LID[head[u]]);
u = parent[head[u]];
}
}
if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]);
elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge);
reverse(all(down));
up.insert(up.end(), all(down));
return up;
}
// 辺の列の情報 (frm,to,str)
// str = "heavy_up", "heavy_down", "light_up", "light_down"
vc<tuple<int, int, string>> get_path_decomposition_detail(int u, int v) {
vc<tuple<int, int, string>> up, down;
while (1) {
if (head[u] == head[v]) break;
if (LID[u] < LID[v]) {
if (v != head[v]) down.eb(head[v], v, "heavy_down"), v = head[v];
down.eb(parent[v], v, "light_down"), v = parent[v];
} else {
if (u != head[u]) up.eb(u, head[u], "heavy_up"), u = head[u];
up.eb(u, parent[u], "light_up"), u = parent[u];
}
}
if (LID[u] < LID[v]) down.eb(u, v, "heavy_down");
elif (LID[v] < LID[u]) up.eb(u, v, "heavy_up");
reverse(all(down));
concat(up, down);
return up;
}
vc<int> restore_path(int u, int v) {
vc<int> P;
for (auto &&[a, b]: get_path_decomposition(u, v, 0)) {
if (a <= b) {
FOR(i, a, b + 1) P.eb(V[i]);
} else {
FOR_R(i, b, a + 1) P.eb(V[i]);
}
}
return P;
}
// path [a,b] と [c,d] の交わり. 空ならば {-1,-1}.
// https://codeforces.com/problemset/problem/500/G
pair<int, int> path_intersection(int a, int b, int c, int d) {
int ab = lca(a, b), ac = lca(a, c), ad = lca(a, d);
int bc = lca(b, c), bd = lca(b, d), cd = lca(c, d);
int x = ab ^ ac ^ bc, y = ab ^ ad ^ bd; // meet(a,b,c), meet(a,b,d)
if (x != y) return {x, y};
int z = ac ^ ad ^ cd;
if (x != z) x = -1;
return {x, x};
}
// uv path 上で check(v) を満たす最後の v
// なければ (つまり check(v) が ng )-1
template <class F>
int max_path(F check, int u, int v) {
if (!check(u)) return -1;
auto pd = get_path_decomposition(u, v, false);
for (auto [a, b]: pd) {
if (!check(V[a])) return u;
if (check(V[b])) {
u = V[b];
continue;
}
int c = binary_search([&](int c) -> bool { return check(V[c]); }, a, b, 0);
return V[c];
}
return u;
}
};
#line 4 "graph/ds/lazy_tree_monoid.hpp"
template <typename TREE, typename ActedMonoid, bool edge>
struct Lazy_Tree_Monoid {
using MX = typename ActedMonoid::Monoid_X;
using MA = typename ActedMonoid::Monoid_A;
using X = typename MX::value_type;
using A = typename MA::value_type;
struct RevAM {
using Monoid_X = Monoid_Reverse<MX>;
using Monoid_A = MA;
using X = typename Monoid_X::value_type;
using A = typename Monoid_A::value_type;
static X act(const X &x, const A &a, const ll &size) { return ActedMonoid::act(x, a, size); }
};
TREE &tree;
int N;
Lazy_SegTree<ActedMonoid> seg;
Lazy_SegTree<RevAM> seg_r;
Lazy_Tree_Monoid(TREE &tree) : tree(tree), N(tree.N) {
build([](int i) -> X { return MX::unit(); });
}
Lazy_Tree_Monoid(TREE &tree, vc<X> &dat) : tree(tree), N(tree.N) {
build([&](int i) -> X { return dat[i]; });
}
template <typename F>
Lazy_Tree_Monoid(TREE &tree, F f) : tree(tree), N(tree.N) {
build(f);
}
template <typename F>
void build(F f) {
if (!edge) {
auto f_v = [&](int i) -> X { return f(tree.V[i]); };
seg.build(N, f_v);
if constexpr (!MX::commute) { seg_r.build(N, f_v); }
} else {
auto f_e = [&](int i) -> X { return (i == 0 ? MX::unit() : f(tree.v_to_e(tree.V[i]))); };
seg.build(N, f_e);
if constexpr (!MX::commute) { seg_r.build(N, f_e); }
}
}
void set(int i, X x) {
if constexpr (edge) i = tree.e_to_v(i);
i = tree.LID[i];
seg.set(i, x);
if constexpr (!MX::commute) { seg_r.set(i, x); }
}
X get(int v) { return seg.get(tree.LID[v]); }
vc<X> get_all() {
vc<X> dat = seg.get_all();
if (!edge) {
vc<X> res(N);
FOR(v, N) res[v] = dat[tree.LID[v]];
return res;
} else {
vc<X> res(N - 1);
FOR(i, N - 1) { res[i] = dat[tree.LID[tree.e_to_v(i)]]; }
return res;
}
}
X prod_path(int u, int v) {
auto pd = tree.get_path_decomposition(u, v, edge);
X val = MX::unit();
for (auto &&[a, b]: pd) { val = MX::op(val, get_prod(a, b)); }
return val;
}
X prod_subtree(int u, int root = -1) {
if (root == u) return prod_all();
if (root == -1 || tree.in_subtree(u, root)) {
int l = tree.LID[u], r = tree.RID[u];
return seg.prod(l + edge, r);
}
assert(!edge); // さぼり
u = tree.jump(u, root, 1);
int L = tree.LID[u], R = tree.RID[u];
return MX::op(seg.prod(0, L), seg.prod(R, N));
}
X prod_all() {
static_assert(MX::commute);
return seg.prod_all();
}
void apply_path(int u, int v, A a) {
auto pd = tree.get_path_decomposition(u, v, edge);
for (auto &&[x, y]: pd) {
int l = min(x, y), r = max(x, y);
seg.apply(l, r + 1, a);
if constexpr (!MX::commute) { seg_r.apply(l, r + 1, a); }
}
}
void apply_subtree(int u, A a) {
int l = tree.LID[u], r = tree.RID[u];
seg.apply(l + edge, r, a);
if constexpr (!MX::commute) { seg_r.apply(l + edge, r, a); }
}
void apply_outtree(int u, A a) {
int l = tree.LID[u], r = tree.RID[u];
seg.apply(0 + edge, l + edge, a);
seg.apply(r, N, a);
if constexpr (!MX::commute) {
seg_r.apply(0 + edge, l + edge, a);
seg_r.apply(r, N, a);
}
}
template <class F>
int max_path(F check, int u, int v) {
if constexpr (edge) return max_path_edge(check, u, v);
if (!check(prod_path(u, u))) return -1;
auto pd = tree.get_path_decomposition(u, v, edge);
X val = MX::unit();
for (auto &&[a, b]: pd) {
X x = get_prod(a, b);
if (check(MX::op(val, x))) {
val = MX::op(val, x);
u = (tree.V[b]);
continue;
}
auto check_tmp = [&](X x) -> bool { return check(MX::op(val, x)); };
if (a <= b) {
// 下り
auto i = seg.max_right(check_tmp, a);
return (i == a ? u : tree.V[i - 1]);
} else {
// 上り
int i = 0;
if constexpr (MX::commute) i = seg.min_left(check_tmp, a + 1);
if constexpr (!MX::commute) i = seg_r.min_left(check_tmp, a + 1);
if (i == a + 1) return u;
return tree.V[i];
}
}
return v;
}
// closed range [a,b] を heavy path の形式に応じて
inline X get_prod(int a, int b) {
if constexpr (MX::commute) return (a <= b ? seg.prod(a, b + 1) : seg.prod(b, a + 1));
return (a <= b ? seg.prod(a, b + 1) : seg_r.prod(b, a + 1));
}
private:
template <class F>
int max_path_edge(F check, int u, int v) {
static_assert(edge);
if (!check(MX::unit())) return -1;
int lca = tree.lca(u, v);
auto pd = tree.get_path_decomposition(u, lca, edge);
X val = MX::unit();
// climb
for (auto &&[a, b]: pd) {
assert(a >= b);
X x = get_prod(a, b);
if (check(MX::op(val, x))) {
val = MX::op(val, x);
u = (tree.parent[tree.V[b]]);
continue;
}
auto check_tmp = [&](X x) -> bool { return check(MX::op(val, x)); };
int i = 0;
if constexpr (MX::commute) i = seg.min_left(check_tmp, a + 1);
if constexpr (!MX::commute) i = seg_r.min_left(check_tmp, a + 1);
if (i == a + 1) return u;
return tree.parent[tree.V[i]];
}
// down
pd = tree.get_path_decomposition(lca, v, edge);
for (auto &&[a, b]: pd) {
assert(a <= b);
X x = get_prod(a, b);
if (check(MX::op(val, x))) {
val = MX::op(val, x);
u = (tree.V[b]);
continue;
}
auto check_tmp = [&](X x) -> bool { return check(MX::op(val, x)); };
auto i = seg.max_right(check_tmp, a);
return (i == a ? u : tree.V[i - 1]);
}
return v;
}
};