This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "graph/count/count_spanning_tree.hpp"
#include "graph/base.hpp" #include "linalg/det.hpp" #include "linalg/blackbox/det.hpp" template <typename mint, bool sparse, typename GT> mint count_spanning_tree_undirected(GT& G) { int N = G.N; if constexpr (!sparse) { vv(mint, mat, N, N); for (auto& e: G.edges) { int a = e.frm, b = e.to; mat[a][a] += 1, mat[a][b] -= 1, mat[b][a] -= 1, mat[b][b] += 1; } FOR(i, N) POP(mat[i]); POP(mat); return det(mat); } else { auto apply = [&](vc<mint>& f) -> vc<mint> { vc<mint> g(N); FOR(v, N - 1) { g[v] += f[v] * G.deg(v); for (auto& e: G[v]) g[e.to] -= f[v]; } POP(g); return g; }; return blackbox_det<mint>(N - 1, apply); } } // out-rooted-tree template <typename mint, bool sparse, typename GT> mint count_spanning_tree_directed(GT& G, int r) { int N = G.N; if constexpr (!sparse) { vv(mint, mat, N, N); for (auto& e: G.edges) { int a = e.frm, b = e.to; mat[b][b] += 1, mat[a][b] -= 1; } FOR(i, N) mat[i].erase(mat[i].begin() + r); mat.erase(mat.begin() + r); return det(mat); } else { auto apply = [&](vc<mint>& f) -> vc<mint> { f.insert(f.begin() + r, 0); vc<mint> g(N); for (auto& e: G.edges) { g[e.to] += f[e.to], g[e.to] -= f[e.frm]; } g.erase(g.begin() + r); return g; }; return blackbox_det<mint>(N - 1, apply); } }
#line 1 "graph/count/count_spanning_tree.hpp" #line 2 "ds/hashmap.hpp" // u64 -> Val template <typename Val> struct HashMap { // n は入れたいものの個数で ok HashMap(u32 n = 0) { build(n); } void build(u32 n) { u32 k = 8; while (k < n * 2) k *= 2; cap = k / 2, mask = k - 1; key.resize(k), val.resize(k), used.assign(k, 0); } // size を保ったまま. size=0 にするときは build すること. void clear() { used.assign(len(used), 0); cap = (mask + 1) / 2; } int size() { return len(used) / 2 - cap; } int index(const u64& k) { int i = 0; for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {} return i; } Val& operator[](const u64& k) { if (cap == 0) extend(); int i = index(k); if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; } return val[i]; } Val get(const u64& k, Val default_value) { int i = index(k); return (used[i] ? val[i] : default_value); } bool count(const u64& k) { int i = index(k); return used[i] && key[i] == k; } // f(key, val) template <typename F> void enumerate_all(F f) { FOR(i, len(used)) if (used[i]) f(key[i], val[i]); } private: u32 cap, mask; vc<u64> key; vc<Val> val; vc<bool> used; u64 hash(u64 x) { static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count(); x += FIXED_RANDOM; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return (x ^ (x >> 31)) & mask; } void extend() { vc<pair<u64, Val>> dat; dat.reserve(len(used) / 2 - cap); FOR(i, len(used)) { if (used[i]) dat.eb(key[i], val[i]); } build(2 * len(dat)); for (auto& [a, b]: dat) (*this)[a] = b; } }; #line 3 "graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { static constexpr bool is_directed = directed; int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void build(int n) { N = n, M = 0; prepared = 0; edges.clear(); indptr.clear(); csr_edges.clear(); vc_deg.clear(); vc_indeg.clear(); vc_outdeg.clear(); } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } #ifdef FASTIO // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } #endif void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } #ifdef FASTIO void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } #endif vc<int> new_idx; vc<bool> used_e; // G における頂点 V[i] が、新しいグラフで i になるようにする // {G, es} // sum(deg(v)) の計算量になっていて、 // 新しいグラフの n+m より大きい可能性があるので注意 Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) { if (len(new_idx) != N) new_idx.assign(N, -1); int n = len(V); FOR(i, n) new_idx[V[i]] = i; Graph<T, directed> G(n); vc<int> history; FOR(i, n) { for (auto&& e: (*this)[V[i]]) { if (len(used_e) <= e.id) used_e.resize(e.id + 1); if (used_e[e.id]) continue; int a = e.frm, b = e.to; if (new_idx[a] != -1 && new_idx[b] != -1) { history.eb(e.id); used_e[e.id] = 1; int eid = (keep_eid ? e.id : -1); G.add(new_idx[a], new_idx[b], e.cost, eid); } } } FOR(i, n) new_idx[V[i]] = -1; for (auto&& eid: history) used_e[eid] = 0; G.build(); return G; } Graph<T, true> to_directed_tree(int root = -1) { if (root == -1) root = 0; assert(!is_directed && prepared && M == N - 1); Graph<T, true> G1(N); vc<int> par(N, -1); auto dfs = [&](auto& dfs, int v) -> void { for (auto& e: (*this)[v]) { if (e.to == par[v]) continue; par[e.to] = v, dfs(dfs, e.to); } }; dfs(dfs, root); for (auto& e: edges) { int a = e.frm, b = e.to; if (par[a] == b) swap(a, b); assert(par[b] == a); G1.add(a, b, e.cost); } G1.build(); return G1; } HashMap<int> MP_FOR_EID; int get_eid(u64 a, u64 b) { if (len(MP_FOR_EID) == 0) { MP_FOR_EID.build(N - 1); for (auto& e: edges) { u64 a = e.frm, b = e.to; u64 k = to_eid_key(a, b); MP_FOR_EID[k] = e.id; } } return MP_FOR_EID.get(to_eid_key(a, b), -1); } u64 to_eid_key(u64 a, u64 b) { if (!directed && a > b) swap(a, b); return N * a + b; } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 2 "mod/barrett.hpp" // https://github.com/atcoder/ac-library/blob/master/atcoder/internal_math.hpp struct Barrett { u32 m; u64 im; explicit Barrett(u32 m = 1) : m(m), im(u64(-1) / m + 1) {} u32 umod() const { return m; } u32 modulo(u64 z) { if (m == 1) return 0; u64 x = (u64)(((unsigned __int128)(z)*im) >> 64); u64 y = x * m; return (z - y + (z < y ? m : 0)); } u64 floor(u64 z) { if (m == 1) return z; u64 x = (u64)(((unsigned __int128)(z)*im) >> 64); u64 y = x * m; return (z < y ? x - 1 : x); } pair<u64, u32> divmod(u64 z) { if (m == 1) return {z, 0}; u64 x = (u64)(((unsigned __int128)(z)*im) >> 64); u64 y = x * m; if (z < y) return {x - 1, z - y + m}; return {x, z - y}; } u32 mul(u32 a, u32 b) { return modulo(u64(a) * b); } }; struct Barrett_64 { u128 mod, mh, ml; explicit Barrett_64(u64 mod = 1) : mod(mod) { u128 m = u128(-1) / mod; if (m * mod + mod == u128(0)) ++m; mh = m >> 64; ml = m & u64(-1); } u64 umod() const { return mod; } u64 modulo(u128 x) { u128 z = (x & u64(-1)) * ml; z = (x & u64(-1)) * mh + (x >> 64) * ml + (z >> 64); z = (x >> 64) * mh + (z >> 64); x -= z * mod; return x < mod ? x : x - mod; } u64 mul(u64 a, u64 b) { return modulo(u128(a) * b); } }; #line 2 "linalg/det.hpp" int det_mod(vvc<int> A, int mod) { Barrett bt(mod); const int n = len(A); ll det = 1; FOR(i, n) { FOR(j, i, n) { if (A[j][i] == 0) continue; if (i != j) { swap(A[i], A[j]), det = mod - det; } break; } FOR(j, i + 1, n) { while (A[i][i] != 0) { ll c = mod - A[j][i] / A[i][i]; FOR_R(k, i, n) { A[j][k] = bt.modulo(A[j][k] + A[i][k] * c); } swap(A[i], A[j]), det = mod - det; } swap(A[i], A[j]), det = mod - det; } } FOR(i, n) det = bt.mul(det, A[i][i]); return det % mod; } template <typename mint> mint det(vvc<mint>& A) { const int n = len(A); vv(int, B, n, n); FOR(i, n) FOR(j, n) B[i][j] = A[i][j].val; return det_mod(B, mint::get_mod()); } #line 2 "seq/find_linear_rec.hpp" template <typename mint> vector<mint> find_linear_rec(vector<mint>& A) { int N = len(A); vc<mint> B = {1}, C = {1}; int l = 0, m = 1; mint p = 1; FOR(i, N) { mint d = A[i]; FOR3(j, 1, l + 1) { d += C[j] * A[i - j]; } if (d == 0) { ++m; continue; } auto tmp = C; mint q = d / p; if (len(C) < len(B) + m) C.insert(C.end(), len(B) + m - len(C), 0); FOR(j, len(B)) C[j + m] -= q * B[j]; if (l + l <= i) { B = tmp; l = i + 1 - l, m = 1; p = d; } else { ++m; } } return C; } #line 2 "random/base.hpp" u64 RNG_64() { static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL; x_ ^= x_ << 7; return x_ ^= x_ >> 9; } u64 RNG(u64 lim) { return RNG_64() % lim; } ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); } #line 3 "linalg/blackbox/min_poly.hpp" // 行列 A をかけることを表す線形変換 f を渡す // auto f = [&](vc<mint> v) -> vc<mint> {}; template <typename mint, typename F> vc<mint> blackbox_min_poly(int N, F f) { vc<mint> S(N + N + 10); vc<mint> c(N); vc<mint> v(N); FOR(i, N) c[i] = RNG(0, mint::get_mod()); FOR(i, N) v[i] = RNG(0, mint::get_mod()); FOR(k, N + N + 10) { FOR(i, N) S[k] += c[i] * v[i]; v = f(v); } S = find_linear_rec(S); reverse(all(S)); return S; } #line 2 "linalg/blackbox/det.hpp" template <typename mint, typename F> mint blackbox_det(int N, F apply) { vc<mint> c(N); FOR(i, N) c[i] = RNG(1, mint::get_mod()); mint r = 1; FOR(i, N) r *= c[i]; auto g = [&](vc<mint> v) -> vc<mint> { FOR(i, N) v[i] *= c[i]; return apply(v); }; auto f = blackbox_min_poly<mint>(N, g); mint det = (len(f) == N + 1 ? f[0] : mint(0)); if (N & 1) det *= -1; det /= r; return det; } #line 5 "graph/count/count_spanning_tree.hpp" template <typename mint, bool sparse, typename GT> mint count_spanning_tree_undirected(GT& G) { int N = G.N; if constexpr (!sparse) { vv(mint, mat, N, N); for (auto& e: G.edges) { int a = e.frm, b = e.to; mat[a][a] += 1, mat[a][b] -= 1, mat[b][a] -= 1, mat[b][b] += 1; } FOR(i, N) POP(mat[i]); POP(mat); return det(mat); } else { auto apply = [&](vc<mint>& f) -> vc<mint> { vc<mint> g(N); FOR(v, N - 1) { g[v] += f[v] * G.deg(v); for (auto& e: G[v]) g[e.to] -= f[v]; } POP(g); return g; }; return blackbox_det<mint>(N - 1, apply); } } // out-rooted-tree template <typename mint, bool sparse, typename GT> mint count_spanning_tree_directed(GT& G, int r) { int N = G.N; if constexpr (!sparse) { vv(mint, mat, N, N); for (auto& e: G.edges) { int a = e.frm, b = e.to; mat[b][b] += 1, mat[a][b] -= 1; } FOR(i, N) mat[i].erase(mat[i].begin() + r); mat.erase(mat.begin() + r); return det(mat); } else { auto apply = [&](vc<mint>& f) -> vc<mint> { f.insert(f.begin() + r, 0); vc<mint> g(N); for (auto& e: G.edges) { g[e.to] += f[e.to], g[e.to] -= f[e.frm]; } g.erase(g.begin() + r); return g; }; return blackbox_det<mint>(N - 1, apply); } }