library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub maspypy/library

:heavy_check_mark: graph/count/count_independent_set.hpp

Depends on

Required by

Verified with

Code

#include "graph/path_cycle.hpp"
#include "poly/convolution.hpp"

// 独立集合数え上げ。空集合も認める。N 1.381^N 程度。
template <typename GT>
u64 count_independent_set(GT& G) {
  using U = u64;
  const int N = G.N;
  assert(N < 64);
  if (N == 0) return 1;
  vc<U> nbd(N);
  FOR(v, N) for (auto&& e: G[v]) nbd[v] |= U(1) << e.to;

  vc<U> dp_path(N + 1), dp_cyc(N + 1);
  dp_path[0] = 1, dp_path[1] = 2;
  FOR(i, 2, N + 1) dp_path[i] = dp_path[i - 1] + dp_path[i - 2];
  FOR(i, 3, N + 1) dp_cyc[i] = dp_path[i - 1] + dp_path[i - 3];

  auto dfs = [&](auto& dfs, U s) -> U {
    int deg0 = 0;
    pair<int, int> p = {-1, -1}; // (v, d)
    FOR(v, N) if (s >> v & 1) {
      int d = popcnt(nbd[v] & s);
      if (chmax(p.se, d)) p.fi = v;
      if (d == 0) {
        ++deg0;
        s &= ~(U(1) << v);
      }
    }
    if (s == 0) return U(1) << deg0;
    int v = p.fi;
    if (p.se >= 3) {
      s &= ~(U(1) << v);
      return (dfs(dfs, s) + dfs(dfs, s & ~nbd[v])) << deg0;
    }
    // d <= 2, path と cycle のみ
    vc<int> V;
    FOR(v, N) if (s >> v & 1) V.eb(v);
    int n = len(V);
    Graph<bool, 0> G(n);
    FOR(i, n) {
      U x = nbd[V[i]] & s;
      while (x) {
        int v = topbit(x);
        x ^= U(1) << v;
        int j = LB(V, v);
        if (i < j) G.add(i, j);
      }
    }
    G.build();
    auto [paths, cycs] = path_cycle(G);
    U res = 1;
    for (auto&& P: paths) res *= dp_path[len(P)];
    for (auto&& C: cycs) res *= dp_cyc[len(C)];
    return res << deg0;
  };
  return dfs(dfs, (U(1) << N) - 1);
}

// 独立集合数え上げ。空集合も認める。N 1.381^N 程度。
template <typename GT>
vc<u64> count_independent_set_by_size(GT& G) {
  using U = u64;
  const int N = G.N;
  assert(N < 64);
  if (N == 0) return {1};
  vc<U> nbd(N);
  FOR(v, N) for (auto&& e: G[v]) nbd[v] |= U(1) << e.to;

  vvc<U> dp_path(N + 1), dp_cyc(N + 1);
  dp_path[0] = {1}, dp_path[1] = {1, 1};
  FOR(i, 2, N + 1) {
    dp_path[i] = dp_path[i - 1];
    dp_path[i].resize(ceil<int>(i, 2) + 1);
    FOR(k, len(dp_path[i - 2])) { dp_path[i][k + 1] += dp_path[i - 2][k]; }
  }
  FOR(i, 3, N + 1) {
    dp_cyc[i] = dp_path[i - 1];
    FOR(k, len(dp_path[i - 3])) dp_cyc[i][k + 1] += dp_path[i - 3][k];
  }

  auto dfs = [&](auto& dfs, U s) -> vc<U> {
    vc<U> res = {1};
    pair<int, int> p = {-1, -1}; // (v, d)
    FOR(v, N) if (s >> v & 1) {
      int d = popcnt(nbd[v] & s);
      if (chmax(p.se, d)) p.fi = v;
      if (d == 0) {
        res.eb(0);
        FOR_R(i, len(res) - 1) res[i + 1] += res[i];
        s &= ~(U(1) << v);
      }
    }
    if (s == 0) return res;
    int v = p.fi;
    if (p.se >= 3) {
      s &= ~(U(1) << v);
      auto f = dfs(dfs, s), g = dfs(dfs, s & ~nbd[v]);
      if (len(f) < len(g) + 1) f.resize(len(g) + 1);
      FOR(i, len(g)) f[i + 1] += g[i];
      return convolution_naive(f, res);
    }
    // d <= 2, path と cycle のみ
    vc<int> V;
    FOR(v, N) if (s >> v & 1) V.eb(v);
    int n = len(V);
    Graph<bool, 0> G(n);
    FOR(i, n) {
      U x = nbd[V[i]] & s;
      while (x) {
        int v = topbit(x);
        x ^= U(1) << v;
        int j = LB(V, v);
        if (i < j) G.add(i, j);
      }
    }
    G.build();
    auto [paths, cycs] = path_cycle(G);
    for (auto&& P: paths) res = convolution_naive(res, dp_path[len(P)]);
    for (auto&& C: cycs) res = convolution_naive(res, dp_cyc[len(C)]);
    return res;
  };
  auto res = dfs(dfs, (U(1) << N) - 1);
  res.resize(N + 1);
  return res;
}

// 重みは頂点重みの積
// https://codeforces.com/contest/468/problem/E
template <typename T, typename GT>
vc<T> count_independent_set_by_size_weighted(GT& G, vc<T> wt) {
  using U = u64;
  const int N = G.N;
  assert(N < 64);
  if (N == 0) return {1};
  vc<U> nbd(N);
  FOR(v, N) for (auto&& e: G[v]) nbd[v] |= U(1) << e.to;

  auto solve_path = [&](const vc<T>& A) -> vc<T> {
    int N = len(A);
    vv(T, dp, 2, ceil<int>(N, 2) + 2);
    dp[0][0] = 1;
    FOR(i, N) {
      FOR_R(j, ceil<int>(i, 2) + 1) {
        T a = dp[0][j];
        T b = dp[1][j];
        dp[0][j] = a + b, dp[1][j] = 0;
        dp[1][j + 1] += a * A[i];
      }
    }
    vc<T> f(ceil<int>(N, 2) + 1);
    FOR(j, len(f)) f[j] = dp[0][j] + dp[1][j];
    return f;
  };
  auto solve_cycle = [&](const vc<T>& A) -> vc<T> {
    int N = len(A);
    vvv(T, dp, 2, 2, ceil<int>(N, 2) + 2);
    dp[0][0][0] = 1;
    dp[1][1][1] = A[0];
    FOR(i, 1, N) {
      FOR(k, 2) {
        FOR_R(j, ceil<int>(i, 2) + 1) {
          T a = dp[k][0][j];
          T b = dp[k][1][j];
          dp[k][0][j] = a + b, dp[k][1][j] = 0;
          dp[k][1][j + 1] += a * A[i];
        }
      }
    }
    vc<T> f(N / 2 + 1);
    FOR(k, N / 2 + 1) { f[k] = dp[0][0][k] + dp[0][1][k] + dp[1][0][k]; }
    return f;
  };

  auto dfs = [&](auto& dfs, U s) -> vc<T> {
    vc<T> res = {1};
    pair<int, int> p = {-1, -1}; // (v, d)
    FOR(v, N) if (s >> v & 1) {
      int d = popcnt(nbd[v] & s);
      if (chmax(p.se, d)) p.fi = v;
      if (d == 0) {
        res.eb(0);
        FOR_R(i, len(res) - 1) res[i + 1] += res[i] * wt[v];
        s &= ~(U(1) << v);
      }
    }
    if (s == 0) return res;
    int v = p.fi;
    if (p.se >= 3) {
      s &= ~(U(1) << v);
      auto f = dfs(dfs, s), g = dfs(dfs, s & ~nbd[v]);
      if (len(f) < len(g) + 1) f.resize(len(g) + 1);
      FOR(i, len(g)) f[i + 1] += g[i] * wt[v];
      return convolution<T>(f, res);
    }
    // d <= 2, path と cycle のみ
    vc<int> V;
    FOR(v, N) if (s >> v & 1) V.eb(v);
    int n = len(V);
    Graph<bool, 0> G(n);
    FOR(i, n) {
      U x = nbd[V[i]] & s;
      while (x) {
        int v = topbit(x);
        x ^= U(1) << v;
        int j = LB(V, v);
        if (i < j) G.add(i, j);
      }
    }
    G.build();
    auto [paths, cycs] = path_cycle(G);
    for (auto&& P: paths) {
      vc<T> A;
      for (auto& i: P) A.eb(wt[V[i]]);
      res = convolution<T>(res, solve_path(A));
    }
    for (auto&& P: cycs) {
      vc<T> A;
      for (auto& i: P) A.eb(wt[V[i]]);
      res = convolution(res, solve_cycle(A));
    }
    return res;
  };
  auto res = dfs(dfs, (U(1) << N) - 1);
  res.resize(N + 1);
  return res;
}
#line 2 "ds/hashmap.hpp"

// u64 -> Val

template <typename Val>
struct HashMap {
  // n は入れたいものの個数で ok

  HashMap(u32 n = 0) { build(n); }
  void build(u32 n) {
    u32 k = 8;
    while (k < n * 2) k *= 2;
    cap = k / 2, mask = k - 1;
    key.resize(k), val.resize(k), used.assign(k, 0);
  }

  // size を保ったまま. size=0 にするときは build すること.

  void clear() {
    used.assign(len(used), 0);
    cap = (mask + 1) / 2;
  }
  int size() { return len(used) / 2 - cap; }

  int index(const u64& k) {
    int i = 0;
    for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {}
    return i;
  }

  Val& operator[](const u64& k) {
    if (cap == 0) extend();
    int i = index(k);
    if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; }
    return val[i];
  }

  Val get(const u64& k, Val default_value) {
    int i = index(k);
    return (used[i] ? val[i] : default_value);
  }

  bool count(const u64& k) {
    int i = index(k);
    return used[i] && key[i] == k;
  }

  // f(key, val)

  template <typename F>
  void enumerate_all(F f) {
    FOR(i, len(used)) if (used[i]) f(key[i], val[i]);
  }

private:
  u32 cap, mask;
  vc<u64> key;
  vc<Val> val;
  vc<bool> used;

  u64 hash(u64 x) {
    static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count();
    x += FIXED_RANDOM;
    x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
    x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
    return (x ^ (x >> 31)) & mask;
  }

  void extend() {
    vc<pair<u64, Val>> dat;
    dat.reserve(len(used) / 2 - cap);
    FOR(i, len(used)) {
      if (used[i]) dat.eb(key[i], val[i]);
    }
    build(2 * len(dat));
    for (auto& [a, b]: dat) (*this)[a] = b;
  }
};
#line 3 "graph/base.hpp"

template <typename T>
struct Edge {
  int frm, to;
  T cost;
  int id;
};

template <typename T = int, bool directed = false>
struct Graph {
  static constexpr bool is_directed = directed;
  int N, M;
  using cost_type = T;
  using edge_type = Edge<T>;
  vector<edge_type> edges;
  vector<int> indptr;
  vector<edge_type> csr_edges;
  vc<int> vc_deg, vc_indeg, vc_outdeg;
  bool prepared;

  class OutgoingEdges {
  public:
    OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}

    const edge_type* begin() const {
      if (l == r) { return 0; }
      return &G->csr_edges[l];
    }

    const edge_type* end() const {
      if (l == r) { return 0; }
      return &G->csr_edges[r];
    }

  private:
    const Graph* G;
    int l, r;
  };

  bool is_prepared() { return prepared; }

  Graph() : N(0), M(0), prepared(0) {}
  Graph(int N) : N(N), M(0), prepared(0) {}

  void build(int n) {
    N = n, M = 0;
    prepared = 0;
    edges.clear();
    indptr.clear();
    csr_edges.clear();
    vc_deg.clear();
    vc_indeg.clear();
    vc_outdeg.clear();
  }

  void add(int frm, int to, T cost = 1, int i = -1) {
    assert(!prepared);
    assert(0 <= frm && 0 <= to && to < N);
    if (i == -1) i = M;
    auto e = edge_type({frm, to, cost, i});
    edges.eb(e);
    ++M;
  }

#ifdef FASTIO
  // wt, off
  void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }

  void read_graph(int M, bool wt = false, int off = 1) {
    for (int m = 0; m < M; ++m) {
      INT(a, b);
      a -= off, b -= off;
      if (!wt) {
        add(a, b);
      } else {
        T c;
        read(c);
        add(a, b, c);
      }
    }
    build();
  }
#endif

  void build() {
    assert(!prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (auto&& e: edges) {
      indptr[e.frm + 1]++;
      if (!directed) indptr[e.to + 1]++;
    }
    for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
    auto counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (auto&& e: edges) {
      csr_edges[counter[e.frm]++] = e;
      if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
    }
  }

  OutgoingEdges operator[](int v) const {
    assert(prepared);
    return {this, indptr[v], indptr[v + 1]};
  }

  vc<int> deg_array() {
    if (vc_deg.empty()) calc_deg();
    return vc_deg;
  }

  pair<vc<int>, vc<int>> deg_array_inout() {
    if (vc_indeg.empty()) calc_deg_inout();
    return {vc_indeg, vc_outdeg};
  }

  int deg(int v) {
    if (vc_deg.empty()) calc_deg();
    return vc_deg[v];
  }

  int in_deg(int v) {
    if (vc_indeg.empty()) calc_deg_inout();
    return vc_indeg[v];
  }

  int out_deg(int v) {
    if (vc_outdeg.empty()) calc_deg_inout();
    return vc_outdeg[v];
  }

#ifdef FASTIO
  void debug() {
    print("Graph");
    if (!prepared) {
      print("frm to cost id");
      for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
    } else {
      print("indptr", indptr);
      print("frm to cost id");
      FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
    }
  }
#endif

  vc<int> new_idx;
  vc<bool> used_e;

  // G における頂点 V[i] が、新しいグラフで i になるようにする
  // {G, es}
  // sum(deg(v)) の計算量になっていて、
  // 新しいグラフの n+m より大きい可能性があるので注意
  Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
    if (len(new_idx) != N) new_idx.assign(N, -1);
    int n = len(V);
    FOR(i, n) new_idx[V[i]] = i;
    Graph<T, directed> G(n);
    vc<int> history;
    FOR(i, n) {
      for (auto&& e: (*this)[V[i]]) {
        if (len(used_e) <= e.id) used_e.resize(e.id + 1);
        if (used_e[e.id]) continue;
        int a = e.frm, b = e.to;
        if (new_idx[a] != -1 && new_idx[b] != -1) {
          history.eb(e.id);
          used_e[e.id] = 1;
          int eid = (keep_eid ? e.id : -1);
          G.add(new_idx[a], new_idx[b], e.cost, eid);
        }
      }
    }
    FOR(i, n) new_idx[V[i]] = -1;
    for (auto&& eid: history) used_e[eid] = 0;
    G.build();
    return G;
  }

  Graph<T, true> to_directed_tree(int root = -1) {
    if (root == -1) root = 0;
    assert(!is_directed && prepared && M == N - 1);
    Graph<T, true> G1(N);
    vc<int> par(N, -1);
    auto dfs = [&](auto& dfs, int v) -> void {
      for (auto& e: (*this)[v]) {
        if (e.to == par[v]) continue;
        par[e.to] = v, dfs(dfs, e.to);
      }
    };
    dfs(dfs, root);
    for (auto& e: edges) {
      int a = e.frm, b = e.to;
      if (par[a] == b) swap(a, b);
      assert(par[b] == a);
      G1.add(a, b, e.cost);
    }
    G1.build();
    return G1;
  }

  HashMap<int> MP_FOR_EID;

  int get_eid(u64 a, u64 b) {
    if (len(MP_FOR_EID) == 0) {
      MP_FOR_EID.build(N - 1);
      for (auto& e: edges) {
        u64 a = e.frm, b = e.to;
        u64 k = to_eid_key(a, b);
        MP_FOR_EID[k] = e.id;
      }
    }
    return MP_FOR_EID.get(to_eid_key(a, b), -1);
  }

  u64 to_eid_key(u64 a, u64 b) {
    if (!directed && a > b) swap(a, b);
    return N * a + b;
  }

private:
  void calc_deg() {
    assert(vc_deg.empty());
    vc_deg.resize(N);
    for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
  }

  void calc_deg_inout() {
    assert(vc_indeg.empty());
    vc_indeg.resize(N);
    vc_outdeg.resize(N);
    for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
  }
};
#line 2 "graph/path_cycle.hpp"

// どの点の次数も 2 以下のグラフがあるときに、
// パスの頂点列, サイクルの頂点列
// に分解する
template <typename GT>
pair<vvc<int>, vvc<int>> path_cycle(GT& G) {
  static_assert(!GT::is_directed);
  int N = G.N;
  auto deg = G.deg_array();
  assert(MAX(deg) <= 2);

  vc<bool> done(N);
  auto calc_frm = [&](int v) -> vc<int> {
    vc<int> P = {v};
    done[v] = 1;
    while (1) {
      bool ok = 0;
      for (auto&& e: G[P.back()]) {
        if (done[e.to]) continue;
        P.eb(e.to);
        done[e.to] = 1;
        ok = 1;
        break;
      }
      if (!ok) break;
    }
    return P;
  };
  vvc<int> paths, cycs;
  FOR(v, N) {
    if (deg[v] == 0) {
      done[v] = 1;
      paths.eb(vc<int>({int(v)}));
    }
    if (done[v] || deg[v] != 1) continue;
    paths.eb(calc_frm(v));
  }
  FOR(v, N) {
    if (done[v]) continue;
    cycs.eb(calc_frm(v));
  }
  return {paths, cycs};
}
#line 2 "mod/modint_common.hpp"

struct has_mod_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};

template <typename mint>
mint inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {0, 1};
  assert(0 <= n);
  if (n >= mod) n %= mod;
  while (len(dat) <= n) {
    int k = len(dat);
    int q = (mod + k - 1) / k;
    dat.eb(dat[k * q - mod] * mint::raw(q));
  }
  return dat[n];
}

template <typename mint>
mint fact(int n) {
  static const int mod = mint::get_mod();
  assert(0 <= n && n < mod);
  static vector<mint> dat = {1, 1};
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
  return dat[n];
}

template <typename mint>
mint fact_inv(int n) {
  static vector<mint> dat = {1, 1};
  if (n < 0) return mint(0);
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
  return dat[n];
}

template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
  return (mint(1) * ... * fact_inv<mint>(xs));
}

template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
  return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}

template <typename mint>
mint C_dense(int n, int k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  static vvc<mint> C;
  static int H = 0, W = 0;
  auto calc = [&](int i, int j) -> mint {
    if (i == 0) return (j == 0 ? mint(1) : mint(0));
    return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
  };
  if (W <= k) {
    FOR(i, H) {
      C[i].resize(k + 1);
      FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
    }
    W = k + 1;
  }
  if (H <= n) {
    C.resize(n + 1);
    FOR(i, H, n + 1) {
      C[i].resize(W);
      FOR(j, W) { C[i][j] = calc(i, j); }
    }
    H = n + 1;
  }
  return C[n][k];
}

template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  if constexpr (dense) return C_dense<mint>(n, k);
  if constexpr (!large) return multinomial<mint>(n, k, n - k);
  k = min(k, n - k);
  mint x(1);
  FOR(i, k) x *= mint(n - i);
  return x * fact_inv<mint>(k);
}

template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
  assert(n >= 0);
  assert(0 <= k && k <= n);
  if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
  return mint(1) / C<mint, 1>(n, k);
}

// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
  assert(n >= 0);
  if (d < 0) return mint(0);
  if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
  return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "mod/modint.hpp"

template <int mod>
struct modint {
  static constexpr u32 umod = u32(mod);
  static_assert(umod < u32(1) << 31);
  u32 val;

  static modint raw(u32 v) {
    modint x;
    x.val = v;
    return x;
  }
  constexpr modint() : val(0) {}
  constexpr modint(u32 x) : val(x % umod) {}
  constexpr modint(u64 x) : val(x % umod) {}
  constexpr modint(u128 x) : val(x % umod) {}
  constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
  bool operator<(const modint &other) const { return val < other.val; }
  modint &operator+=(const modint &p) {
    if ((val += p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator-=(const modint &p) {
    if ((val += umod - p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator*=(const modint &p) {
    val = u64(val) * p.val % umod;
    return *this;
  }
  modint &operator/=(const modint &p) {
    *this *= p.inverse();
    return *this;
  }
  modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
  modint operator+(const modint &p) const { return modint(*this) += p; }
  modint operator-(const modint &p) const { return modint(*this) -= p; }
  modint operator*(const modint &p) const { return modint(*this) *= p; }
  modint operator/(const modint &p) const { return modint(*this) /= p; }
  bool operator==(const modint &p) const { return val == p.val; }
  bool operator!=(const modint &p) const { return val != p.val; }
  modint inverse() const {
    int a = val, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return modint(u);
  }
  modint pow(ll n) const {
    assert(n >= 0);
    modint ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  static constexpr int get_mod() { return mod; }
  // (n, r), r は 1 の 2^n 乗根
  static constexpr pair<int, int> ntt_info() {
    if (mod == 120586241) return {20, 74066978};
    if (mod == 167772161) return {25, 17};
    if (mod == 469762049) return {26, 30};
    if (mod == 754974721) return {24, 362};
    if (mod == 880803841) return {23, 211};
    if (mod == 943718401) return {22, 663003469};
    if (mod == 998244353) return {23, 31};
    if (mod == 1004535809) return {21, 582313106};
    if (mod == 1012924417) return {21, 368093570};
    return {-1, -1};
  }
  static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};

#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
  fastio::rd(x.val);
  x.val %= mod;
  // assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
  fastio::wt(x.val);
}
#endif

using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 2 "mod/mod_inv.hpp"

// long でも大丈夫

// (val * x - 1) が mod の倍数になるようにする

// 特に mod=0 なら x=0 が満たす

ll mod_inv(ll val, ll mod) {
  if (mod == 0) return 0;
  mod = abs(mod);
  val %= mod;
  if (val < 0) val += mod;
  ll a = val, b = mod, u = 1, v = 0, t;
  while (b > 0) {
    t = a / b;
    swap(a -= t * b, b), swap(u -= t * v, v);
  }
  if (u < 0) u += mod;
  return u;
}
#line 2 "mod/crt3.hpp"

constexpr u32 mod_pow_constexpr(u64 a, u64 n, u32 mod) {
  a %= mod;
  u64 res = 1;
  FOR(32) {
    if (n & 1) res = res * a % mod;
    a = a * a % mod, n /= 2;
  }
  return res;
}

template <typename T, u32 p0, u32 p1>
T CRT2(u64 a0, u64 a1) {
  static_assert(p0 < p1);
  static constexpr u64 x0_1 = mod_pow_constexpr(p0, p1 - 2, p1);
  u64 c = (a1 - a0 + p1) * x0_1 % p1;
  return a0 + c * p0;
}

template <typename T, u32 p0, u32 p1, u32 p2>
T CRT3(u64 a0, u64 a1, u64 a2) {
  static_assert(p0 < p1 && p1 < p2);
  static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);
  static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
  static constexpr u64 p01 = u64(p0) * p1;
  u64 c = (a1 - a0 + p1) * x1 % p1;
  u64 ans_1 = a0 + c * p0;
  c = (a2 - ans_1 % p2 + p2) * x2 % p2;
  return T(ans_1) + T(c) * T(p01);
}

template <typename T, u32 p0, u32 p1, u32 p2, u32 p3>
T CRT4(u64 a0, u64 a1, u64 a2, u64 a3) {
  static_assert(p0 < p1 && p1 < p2 && p2 < p3);
  static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);
  static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
  static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3);
  static constexpr u64 p01 = u64(p0) * p1;
  u64 c = (a1 - a0 + p1) * x1 % p1;
  u64 ans_1 = a0 + c * p0;
  c = (a2 - ans_1 % p2 + p2) * x2 % p2;
  u128 ans_2 = ans_1 + c * static_cast<u128>(p01);
  c = (a3 - ans_2 % p3 + p3) * x3 % p3;
  return T(ans_2) + T(c) * T(p01) * T(p2);
}

template <typename T, u32 p0, u32 p1, u32 p2, u32 p3, u32 p4>
T CRT5(u64 a0, u64 a1, u64 a2, u64 a3, u64 a4) {
  static_assert(p0 < p1 && p1 < p2 && p2 < p3 && p3 < p4);
  static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);
  static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
  static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3);
  static constexpr u64 x4 = mod_pow_constexpr(u64(p0) * p1 % p4 * p2 % p4 * p3 % p4, p4 - 2, p4);
  static constexpr u64 p01 = u64(p0) * p1;
  static constexpr u64 p23 = u64(p2) * p3;
  u64 c = (a1 - a0 + p1) * x1 % p1;
  u64 ans_1 = a0 + c * p0;
  c = (a2 - ans_1 % p2 + p2) * x2 % p2;
  u128 ans_2 = ans_1 + c * static_cast<u128>(p01);
  c = static_cast<u64>(a3 - ans_2 % p3 + p3) * x3 % p3;
  u128 ans_3 = ans_2 + static_cast<u128>(c * p2) * p01;
  c = static_cast<u64>(a4 - ans_3 % p4 + p4) * x4 % p4;
  return T(ans_3) + T(c) * T(p01) * T(p23);
}
#line 2 "poly/convolution_naive.hpp"

template <class T, typename enable_if<!has_mod<T>::value>::type* = nullptr>
vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) {
  int n = int(a.size()), m = int(b.size());
  if (n > m) return convolution_naive<T>(b, a);
  if (n == 0) return {};
  vector<T> ans(n + m - 1);
  FOR(i, n) FOR(j, m) ans[i + j] += a[i] * b[j];
  return ans;
}

template <class T, typename enable_if<has_mod<T>::value>::type* = nullptr>
vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) {
  int n = int(a.size()), m = int(b.size());
  if (n > m) return convolution_naive<T>(b, a);
  if (n == 0) return {};
  vc<T> ans(n + m - 1);
  if (n <= 16 && (T::get_mod() < (1 << 30))) {
    for (int k = 0; k < n + m - 1; ++k) {
      int s = max(0, k - m + 1);
      int t = min(n, k + 1);
      u64 sm = 0;
      for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); }
      ans[k] = sm;
    }
  } else {
    for (int k = 0; k < n + m - 1; ++k) {
      int s = max(0, k - m + 1);
      int t = min(n, k + 1);
      u128 sm = 0;
      for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); }
      ans[k] = T::raw(sm % T::get_mod());
    }
  }
  return ans;
}
#line 2 "poly/convolution_karatsuba.hpp"

// 任意の環でできる
template <typename T>
vc<T> convolution_karatsuba(const vc<T>& f, const vc<T>& g) {
  const int thresh = 30;
  if (min(len(f), len(g)) <= thresh) return convolution_naive(f, g);
  int n = max(len(f), len(g));
  int m = ceil(n, 2);
  vc<T> f1, f2, g1, g2;
  if (len(f) < m) f1 = f;
  if (len(f) >= m) f1 = {f.begin(), f.begin() + m};
  if (len(f) >= m) f2 = {f.begin() + m, f.end()};
  if (len(g) < m) g1 = g;
  if (len(g) >= m) g1 = {g.begin(), g.begin() + m};
  if (len(g) >= m) g2 = {g.begin() + m, g.end()};
  vc<T> a = convolution_karatsuba(f1, g1);
  vc<T> b = convolution_karatsuba(f2, g2);
  FOR(i, len(f2)) f1[i] += f2[i];
  FOR(i, len(g2)) g1[i] += g2[i];
  vc<T> c = convolution_karatsuba(f1, g1);
  vc<T> F(len(f) + len(g) - 1);
  assert(2 * m + len(b) <= len(F));
  FOR(i, len(a)) F[i] += a[i], c[i] -= a[i];
  FOR(i, len(b)) F[2 * m + i] += b[i], c[i] -= b[i];
  if (c.back() == T(0)) c.pop_back();
  FOR(i, len(c)) if (c[i] != T(0)) F[m + i] += c[i];
  return F;
}
#line 2 "poly/ntt.hpp"

template <class mint>
void ntt(vector<mint>& a, bool inverse) {
  assert(mint::can_ntt());
  const int rank2 = mint::ntt_info().fi;
  const int mod = mint::get_mod();
  static array<mint, 30> root, iroot;
  static array<mint, 30> rate2, irate2;
  static array<mint, 30> rate3, irate3;

  assert(rank2 != -1 && len(a) <= (1 << max(0, rank2)));

  static bool prepared = 0;
  if (!prepared) {
    prepared = 1;
    root[rank2] = mint::ntt_info().se;
    iroot[rank2] = mint(1) / root[rank2];
    FOR_R(i, rank2) {
      root[i] = root[i + 1] * root[i + 1];
      iroot[i] = iroot[i + 1] * iroot[i + 1];
    }
    mint prod = 1, iprod = 1;
    for (int i = 0; i <= rank2 - 2; i++) {
      rate2[i] = root[i + 2] * prod;
      irate2[i] = iroot[i + 2] * iprod;
      prod *= iroot[i + 2];
      iprod *= root[i + 2];
    }
    prod = 1, iprod = 1;
    for (int i = 0; i <= rank2 - 3; i++) {
      rate3[i] = root[i + 3] * prod;
      irate3[i] = iroot[i + 3] * iprod;
      prod *= iroot[i + 3];
      iprod *= root[i + 3];
    }
  }

  int n = int(a.size());
  int h = topbit(n);
  assert(n == 1 << h);
  if (!inverse) {
    int len = 0;
    while (len < h) {
      if (h - len == 1) {
        int p = 1 << (h - len - 1);
        mint rot = 1;
        FOR(s, 1 << len) {
          int offset = s << (h - len);
          FOR(i, p) {
            auto l = a[i + offset];
            auto r = a[i + offset + p] * rot;
            a[i + offset] = l + r;
            a[i + offset + p] = l - r;
          }
          rot *= rate2[topbit(~s & -~s)];
        }
        len++;
      } else {
        int p = 1 << (h - len - 2);
        mint rot = 1, imag = root[2];
        for (int s = 0; s < (1 << len); s++) {
          mint rot2 = rot * rot;
          mint rot3 = rot2 * rot;
          int offset = s << (h - len);
          for (int i = 0; i < p; i++) {
            u64 mod2 = u64(mod) * mod;
            u64 a0 = a[i + offset].val;
            u64 a1 = u64(a[i + offset + p].val) * rot.val;
            u64 a2 = u64(a[i + offset + 2 * p].val) * rot2.val;
            u64 a3 = u64(a[i + offset + 3 * p].val) * rot3.val;
            u64 a1na3imag = (a1 + mod2 - a3) % mod * imag.val;
            u64 na2 = mod2 - a2;
            a[i + offset] = a0 + a2 + a1 + a3;
            a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
            a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
            a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
          }
          rot *= rate3[topbit(~s & -~s)];
        }
        len += 2;
      }
    }
  } else {
    mint coef = mint(1) / mint(len(a));
    FOR(i, len(a)) a[i] *= coef;
    int len = h;
    while (len) {
      if (len == 1) {
        int p = 1 << (h - len);
        mint irot = 1;
        FOR(s, 1 << (len - 1)) {
          int offset = s << (h - len + 1);
          FOR(i, p) {
            u64 l = a[i + offset].val;
            u64 r = a[i + offset + p].val;
            a[i + offset] = l + r;
            a[i + offset + p] = (mod + l - r) * irot.val;
          }
          irot *= irate2[topbit(~s & -~s)];
        }
        len--;
      } else {
        int p = 1 << (h - len);
        mint irot = 1, iimag = iroot[2];
        FOR(s, (1 << (len - 2))) {
          mint irot2 = irot * irot;
          mint irot3 = irot2 * irot;
          int offset = s << (h - len + 2);
          for (int i = 0; i < p; i++) {
            u64 a0 = a[i + offset + 0 * p].val;
            u64 a1 = a[i + offset + 1 * p].val;
            u64 a2 = a[i + offset + 2 * p].val;
            u64 a3 = a[i + offset + 3 * p].val;
            u64 x = (mod + a2 - a3) * iimag.val % mod;
            a[i + offset] = a0 + a1 + a2 + a3;
            a[i + offset + 1 * p] = (a0 + mod - a1 + x) * irot.val;
            a[i + offset + 2 * p] = (a0 + a1 + 2 * mod - a2 - a3) * irot2.val;
            a[i + offset + 3 * p] = (a0 + 2 * mod - a1 - x) * irot3.val;
          }
          irot *= irate3[topbit(~s & -~s)];
        }
        len -= 2;
      }
    }
  }
}
#line 8 "poly/convolution.hpp"

template <class mint>
vector<mint> convolution_ntt(vector<mint> a, vector<mint> b) {
  if (a.empty() || b.empty()) return {};
  int n = int(a.size()), m = int(b.size());
  int sz = 1;
  while (sz < n + m - 1) sz *= 2;

  // sz = 2^k のときの高速化。分割統治的なやつで損しまくるので。

  if ((n + m - 3) <= sz / 2) {
    auto a_last = a.back(), b_last = b.back();
    a.pop_back(), b.pop_back();
    auto c = convolution(a, b);
    c.resize(n + m - 1);
    c[n + m - 2] = a_last * b_last;
    FOR(i, len(a)) c[i + len(b)] += a[i] * b_last;
    FOR(i, len(b)) c[i + len(a)] += b[i] * a_last;
    return c;
  }

  a.resize(sz), b.resize(sz);
  bool same = a == b;
  ntt(a, 0);
  if (same) {
    b = a;
  } else {
    ntt(b, 0);
  }
  FOR(i, sz) a[i] *= b[i];
  ntt(a, 1);
  a.resize(n + m - 1);
  return a;
}

template <typename mint>
vector<mint> convolution_garner(const vector<mint>& a, const vector<mint>& b) {
  int n = len(a), m = len(b);
  if (!n || !m) return {};
  static constexpr int p0 = 167772161;
  static constexpr int p1 = 469762049;
  static constexpr int p2 = 754974721;
  using mint0 = modint<p0>;
  using mint1 = modint<p1>;
  using mint2 = modint<p2>;
  vc<mint0> a0(n), b0(m);
  vc<mint1> a1(n), b1(m);
  vc<mint2> a2(n), b2(m);
  FOR(i, n) a0[i] = a[i].val, a1[i] = a[i].val, a2[i] = a[i].val;
  FOR(i, m) b0[i] = b[i].val, b1[i] = b[i].val, b2[i] = b[i].val;
  auto c0 = convolution_ntt<mint0>(a0, b0);
  auto c1 = convolution_ntt<mint1>(a1, b1);
  auto c2 = convolution_ntt<mint2>(a2, b2);
  vc<mint> c(len(c0));
  FOR(i, n + m - 1) { c[i] = CRT3<mint, p0, p1, p2>(c0[i].val, c1[i].val, c2[i].val); }
  return c;
}

vector<ll> convolution(vector<ll> a, vector<ll> b) {
  int n = len(a), m = len(b);
  if (!n || !m) return {};
  if (min(n, m) <= 2500) return convolution_naive(a, b);

  ll mi_a = MIN(a), mi_b = MIN(b);
  for (auto& x: a) x -= mi_a;
  for (auto& x: b) x -= mi_b;
  assert(MAX(a) * MAX(b) <= 1e18);

  auto Ac = cumsum<ll>(a), Bc = cumsum<ll>(b);
  vi res(n + m - 1);
  for (int k = 0; k < n + m - 1; ++k) {
    int s = max(0, k - m + 1);
    int t = min(n, k + 1);
    res[k] += (t - s) * mi_a * mi_b;
    res[k] += mi_a * (Bc[k - s + 1] - Bc[k - t + 1]);
    res[k] += mi_b * (Ac[t] - Ac[s]);
  }

  static constexpr u32 MOD1 = 1004535809;
  static constexpr u32 MOD2 = 1012924417;
  using mint1 = modint<MOD1>;
  using mint2 = modint<MOD2>;

  vc<mint1> a1(n), b1(m);
  vc<mint2> a2(n), b2(m);
  FOR(i, n) a1[i] = a[i], a2[i] = a[i];
  FOR(i, m) b1[i] = b[i], b2[i] = b[i];

  auto c1 = convolution_ntt<mint1>(a1, b1);
  auto c2 = convolution_ntt<mint2>(a2, b2);

  FOR(i, n + m - 1) { res[i] += CRT2<u64, MOD1, MOD2>(c1[i].val, c2[i].val); }
  return res;
}

template <typename mint>
vc<mint> convolution(const vc<mint>& a, const vc<mint>& b) {
  int n = len(a), m = len(b);
  if (!n || !m) return {};
  if (mint::can_ntt()) {
    if (min(n, m) <= 50) return convolution_karatsuba<mint>(a, b);
    return convolution_ntt(a, b);
  }
  if (min(n, m) <= 200) return convolution_karatsuba<mint>(a, b);
  return convolution_garner(a, b);
}
#line 3 "graph/count/count_independent_set.hpp"

// 独立集合数え上げ。空集合も認める。N 1.381^N 程度。
template <typename GT>
u64 count_independent_set(GT& G) {
  using U = u64;
  const int N = G.N;
  assert(N < 64);
  if (N == 0) return 1;
  vc<U> nbd(N);
  FOR(v, N) for (auto&& e: G[v]) nbd[v] |= U(1) << e.to;

  vc<U> dp_path(N + 1), dp_cyc(N + 1);
  dp_path[0] = 1, dp_path[1] = 2;
  FOR(i, 2, N + 1) dp_path[i] = dp_path[i - 1] + dp_path[i - 2];
  FOR(i, 3, N + 1) dp_cyc[i] = dp_path[i - 1] + dp_path[i - 3];

  auto dfs = [&](auto& dfs, U s) -> U {
    int deg0 = 0;
    pair<int, int> p = {-1, -1}; // (v, d)
    FOR(v, N) if (s >> v & 1) {
      int d = popcnt(nbd[v] & s);
      if (chmax(p.se, d)) p.fi = v;
      if (d == 0) {
        ++deg0;
        s &= ~(U(1) << v);
      }
    }
    if (s == 0) return U(1) << deg0;
    int v = p.fi;
    if (p.se >= 3) {
      s &= ~(U(1) << v);
      return (dfs(dfs, s) + dfs(dfs, s & ~nbd[v])) << deg0;
    }
    // d <= 2, path と cycle のみ
    vc<int> V;
    FOR(v, N) if (s >> v & 1) V.eb(v);
    int n = len(V);
    Graph<bool, 0> G(n);
    FOR(i, n) {
      U x = nbd[V[i]] & s;
      while (x) {
        int v = topbit(x);
        x ^= U(1) << v;
        int j = LB(V, v);
        if (i < j) G.add(i, j);
      }
    }
    G.build();
    auto [paths, cycs] = path_cycle(G);
    U res = 1;
    for (auto&& P: paths) res *= dp_path[len(P)];
    for (auto&& C: cycs) res *= dp_cyc[len(C)];
    return res << deg0;
  };
  return dfs(dfs, (U(1) << N) - 1);
}

// 独立集合数え上げ。空集合も認める。N 1.381^N 程度。
template <typename GT>
vc<u64> count_independent_set_by_size(GT& G) {
  using U = u64;
  const int N = G.N;
  assert(N < 64);
  if (N == 0) return {1};
  vc<U> nbd(N);
  FOR(v, N) for (auto&& e: G[v]) nbd[v] |= U(1) << e.to;

  vvc<U> dp_path(N + 1), dp_cyc(N + 1);
  dp_path[0] = {1}, dp_path[1] = {1, 1};
  FOR(i, 2, N + 1) {
    dp_path[i] = dp_path[i - 1];
    dp_path[i].resize(ceil<int>(i, 2) + 1);
    FOR(k, len(dp_path[i - 2])) { dp_path[i][k + 1] += dp_path[i - 2][k]; }
  }
  FOR(i, 3, N + 1) {
    dp_cyc[i] = dp_path[i - 1];
    FOR(k, len(dp_path[i - 3])) dp_cyc[i][k + 1] += dp_path[i - 3][k];
  }

  auto dfs = [&](auto& dfs, U s) -> vc<U> {
    vc<U> res = {1};
    pair<int, int> p = {-1, -1}; // (v, d)
    FOR(v, N) if (s >> v & 1) {
      int d = popcnt(nbd[v] & s);
      if (chmax(p.se, d)) p.fi = v;
      if (d == 0) {
        res.eb(0);
        FOR_R(i, len(res) - 1) res[i + 1] += res[i];
        s &= ~(U(1) << v);
      }
    }
    if (s == 0) return res;
    int v = p.fi;
    if (p.se >= 3) {
      s &= ~(U(1) << v);
      auto f = dfs(dfs, s), g = dfs(dfs, s & ~nbd[v]);
      if (len(f) < len(g) + 1) f.resize(len(g) + 1);
      FOR(i, len(g)) f[i + 1] += g[i];
      return convolution_naive(f, res);
    }
    // d <= 2, path と cycle のみ
    vc<int> V;
    FOR(v, N) if (s >> v & 1) V.eb(v);
    int n = len(V);
    Graph<bool, 0> G(n);
    FOR(i, n) {
      U x = nbd[V[i]] & s;
      while (x) {
        int v = topbit(x);
        x ^= U(1) << v;
        int j = LB(V, v);
        if (i < j) G.add(i, j);
      }
    }
    G.build();
    auto [paths, cycs] = path_cycle(G);
    for (auto&& P: paths) res = convolution_naive(res, dp_path[len(P)]);
    for (auto&& C: cycs) res = convolution_naive(res, dp_cyc[len(C)]);
    return res;
  };
  auto res = dfs(dfs, (U(1) << N) - 1);
  res.resize(N + 1);
  return res;
}

// 重みは頂点重みの積
// https://codeforces.com/contest/468/problem/E
template <typename T, typename GT>
vc<T> count_independent_set_by_size_weighted(GT& G, vc<T> wt) {
  using U = u64;
  const int N = G.N;
  assert(N < 64);
  if (N == 0) return {1};
  vc<U> nbd(N);
  FOR(v, N) for (auto&& e: G[v]) nbd[v] |= U(1) << e.to;

  auto solve_path = [&](const vc<T>& A) -> vc<T> {
    int N = len(A);
    vv(T, dp, 2, ceil<int>(N, 2) + 2);
    dp[0][0] = 1;
    FOR(i, N) {
      FOR_R(j, ceil<int>(i, 2) + 1) {
        T a = dp[0][j];
        T b = dp[1][j];
        dp[0][j] = a + b, dp[1][j] = 0;
        dp[1][j + 1] += a * A[i];
      }
    }
    vc<T> f(ceil<int>(N, 2) + 1);
    FOR(j, len(f)) f[j] = dp[0][j] + dp[1][j];
    return f;
  };
  auto solve_cycle = [&](const vc<T>& A) -> vc<T> {
    int N = len(A);
    vvv(T, dp, 2, 2, ceil<int>(N, 2) + 2);
    dp[0][0][0] = 1;
    dp[1][1][1] = A[0];
    FOR(i, 1, N) {
      FOR(k, 2) {
        FOR_R(j, ceil<int>(i, 2) + 1) {
          T a = dp[k][0][j];
          T b = dp[k][1][j];
          dp[k][0][j] = a + b, dp[k][1][j] = 0;
          dp[k][1][j + 1] += a * A[i];
        }
      }
    }
    vc<T> f(N / 2 + 1);
    FOR(k, N / 2 + 1) { f[k] = dp[0][0][k] + dp[0][1][k] + dp[1][0][k]; }
    return f;
  };

  auto dfs = [&](auto& dfs, U s) -> vc<T> {
    vc<T> res = {1};
    pair<int, int> p = {-1, -1}; // (v, d)
    FOR(v, N) if (s >> v & 1) {
      int d = popcnt(nbd[v] & s);
      if (chmax(p.se, d)) p.fi = v;
      if (d == 0) {
        res.eb(0);
        FOR_R(i, len(res) - 1) res[i + 1] += res[i] * wt[v];
        s &= ~(U(1) << v);
      }
    }
    if (s == 0) return res;
    int v = p.fi;
    if (p.se >= 3) {
      s &= ~(U(1) << v);
      auto f = dfs(dfs, s), g = dfs(dfs, s & ~nbd[v]);
      if (len(f) < len(g) + 1) f.resize(len(g) + 1);
      FOR(i, len(g)) f[i + 1] += g[i] * wt[v];
      return convolution<T>(f, res);
    }
    // d <= 2, path と cycle のみ
    vc<int> V;
    FOR(v, N) if (s >> v & 1) V.eb(v);
    int n = len(V);
    Graph<bool, 0> G(n);
    FOR(i, n) {
      U x = nbd[V[i]] & s;
      while (x) {
        int v = topbit(x);
        x ^= U(1) << v;
        int j = LB(V, v);
        if (i < j) G.add(i, j);
      }
    }
    G.build();
    auto [paths, cycs] = path_cycle(G);
    for (auto&& P: paths) {
      vc<T> A;
      for (auto& i: P) A.eb(wt[V[i]]);
      res = convolution<T>(res, solve_path(A));
    }
    for (auto&& P: cycs) {
      vc<T> A;
      for (auto& i: P) A.eb(wt[V[i]]);
      res = convolution(res, solve_cycle(A));
    }
    return res;
  };
  auto res = dfs(dfs, (U(1) << N) - 1);
  res.resize(N + 1);
  return res;
}
Back to top page