This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/count/count_connected_subgraph.hpp"
#include "graph/base.hpp"
#include "setfunc/sps_log.hpp"
// O(N^2 2^N)
template <typename T, int LIM>
vc<T> count_connected_subgraph(Graph<int, 0> G) {
int N = G.N;
assert(N <= LIM);
vc<T> pw(G.M + 1, 1);
FOR(i, G.M) pw[i + 1] = pw[i] + pw[i];
// edge
vc<int> E(1 << N);
for (auto& e: G.edges) { E[(1 << e.frm) | (1 << e.to)]++; }
FOR(i, N) FOR(s, 1 << N) {
int t = s | 1 << i;
if (s < t) E[t] += E[s];
}
// any graph
vc<T> dp(1 << N);
FOR(s, 1 << N) dp[s] = pw[E[s]];
// connected
return sps_log<T, LIM>(dp);
}
#line 2 "ds/hashmap.hpp"
// u64 -> Val
template <typename Val>
struct HashMap {
// n は入れたいものの個数で ok
HashMap(u32 n = 0) { build(n); }
void build(u32 n) {
u32 k = 8;
while (k < n * 2) k *= 2;
cap = k / 2, mask = k - 1;
key.resize(k), val.resize(k), used.assign(k, 0);
}
// size を保ったまま. size=0 にするときは build すること.
void clear() {
used.assign(len(used), 0);
cap = (mask + 1) / 2;
}
int size() { return len(used) / 2 - cap; }
int index(const u64& k) {
int i = 0;
for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {}
return i;
}
Val& operator[](const u64& k) {
if (cap == 0) extend();
int i = index(k);
if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; }
return val[i];
}
Val get(const u64& k, Val default_value) {
int i = index(k);
return (used[i] ? val[i] : default_value);
}
bool count(const u64& k) {
int i = index(k);
return used[i] && key[i] == k;
}
// f(key, val)
template <typename F>
void enumerate_all(F f) {
FOR(i, len(used)) if (used[i]) f(key[i], val[i]);
}
private:
u32 cap, mask;
vc<u64> key;
vc<Val> val;
vc<bool> used;
u64 hash(u64 x) {
static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count();
x += FIXED_RANDOM;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return (x ^ (x >> 31)) & mask;
}
void extend() {
vc<pair<u64, Val>> dat;
dat.reserve(len(used) / 2 - cap);
FOR(i, len(used)) {
if (used[i]) dat.eb(key[i], val[i]);
}
build(2 * len(dat));
for (auto& [a, b]: dat) (*this)[a] = b;
}
};
#line 3 "graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
static constexpr bool is_directed = directed;
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
#ifdef FASTIO
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
#endif
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
#ifdef FASTIO
void debug() {
#ifdef LOCAL
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
#endif
}
#endif
vc<int> new_idx;
vc<bool> used_e;
// G における頂点 V[i] が、新しいグラフで i になるようにする
// {G, es}
// sum(deg(v)) の計算量になっていて、
// 新しいグラフの n+m より大きい可能性があるので注意
Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
if (len(new_idx) != N) new_idx.assign(N, -1);
int n = len(V);
FOR(i, n) new_idx[V[i]] = i;
Graph<T, directed> G(n);
vc<int> history;
FOR(i, n) {
for (auto&& e: (*this)[V[i]]) {
if (len(used_e) <= e.id) used_e.resize(e.id + 1);
if (used_e[e.id]) continue;
int a = e.frm, b = e.to;
if (new_idx[a] != -1 && new_idx[b] != -1) {
history.eb(e.id);
used_e[e.id] = 1;
int eid = (keep_eid ? e.id : -1);
G.add(new_idx[a], new_idx[b], e.cost, eid);
}
}
}
FOR(i, n) new_idx[V[i]] = -1;
for (auto&& eid: history) used_e[eid] = 0;
G.build();
return G;
}
Graph<T, true> to_directed_tree(int root = -1) {
if (root == -1) root = 0;
assert(!is_directed && prepared && M == N - 1);
Graph<T, true> G1(N);
vc<int> par(N, -1);
auto dfs = [&](auto& dfs, int v) -> void {
for (auto& e: (*this)[v]) {
if (e.to == par[v]) continue;
par[e.to] = v, dfs(dfs, e.to);
}
};
dfs(dfs, root);
for (auto& e: edges) {
int a = e.frm, b = e.to;
if (par[a] == b) swap(a, b);
assert(par[b] == a);
G1.add(a, b, e.cost);
}
G1.build();
return G1;
}
HashMap<int> MP_FOR_EID;
int get_eid(u64 a, u64 b) {
if (len(MP_FOR_EID) == 0) {
MP_FOR_EID.build(N - 1);
for (auto& e: edges) {
u64 a = e.frm, b = e.to;
u64 k = to_eid_key(a, b);
MP_FOR_EID[k] = e.id;
}
}
return MP_FOR_EID.get(to_eid_key(a, b), -1);
}
u64 to_eid_key(u64 a, u64 b) {
if (!directed && a > b) swap(a, b);
return N * a + b;
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 2 "mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint::raw(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n && n < mod);
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static vector<mint> dat = {1, 1};
if (n < 0) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "mod/modint.hpp"
template <int mod>
struct modint {
static constexpr u32 umod = u32(mod);
static_assert(umod < u32(1) << 31);
u32 val;
static modint raw(u32 v) {
modint x;
x.val = v;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(u32 x) : val(x % umod) {}
constexpr modint(u64 x) : val(x % umod) {}
constexpr modint(u128 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = u64(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
if (n < 0) return inverse().pow(-n);
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 120586241) return {20, 74066978};
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 998244353) return {23, 31};
if (mod == 1004535809) return {21, 582313106};
if (mod == 1012924417) return {21, 368093570};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
fastio::rd(x.val);
x.val %= mod;
// assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
fastio::wt(x.val);
}
#endif
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 2 "setfunc/ranked_zeta.hpp"
template <typename T, int LIM>
vc<array<T, LIM + 1>> ranked_zeta(const vc<T>& f) {
int n = topbit(len(f));
assert(n <= LIM);
assert(len(f) == 1 << n);
vc<array<T, LIM + 1>> Rf(1 << n);
for (int s = 0; s < (1 << n); ++s) Rf[s][popcnt(s)] = f[s];
for (int i = 0; i < n; ++i) {
int w = 1 << i;
for (int p = 0; p < (1 << n); p += 2 * w) {
for (int s = p; s < p + w; ++s) {
int t = s | 1 << i;
for (int d = 0; d <= n; ++d) Rf[t][d] += Rf[s][d];
}
}
}
return Rf;
}
template <typename T, int LIM>
vc<T> ranked_mobius(vc<array<T, LIM + 1>>& Rf) {
int n = topbit(len(Rf));
assert(len(Rf) == 1 << n);
for (int i = 0; i < n; ++i) {
int w = 1 << i;
for (int p = 0; p < (1 << n); p += 2 * w) {
for (int s = p; s < p + w; ++s) {
int t = s | 1 << i;
for (int d = 0; d <= n; ++d) Rf[t][d] -= Rf[s][d];
}
}
}
vc<T> f(1 << n);
for (int s = 0; s < (1 << n); ++s) f[s] = Rf[s][popcnt(s)];
return f;
}
#line 3 "setfunc/sps_composition.hpp"
// sum_i f_i/i! s^i, s^i is subset-convolution
template <typename mint, int LIM>
vc<mint> sps_composition_egf(vc<mint>& f, vc<mint>& s) {
const int N = topbit(len(s));
assert(len(s) == (1 << N) && s[0] == mint(0));
if (len(f) > N) f.resize(N + 1);
int D = len(f) - 1;
using ARR = array<mint, LIM + 1>;
vvc<ARR> zs(N);
FOR(i, N) { zs[i] = ranked_zeta<mint, LIM>({s.begin() + (1 << i), s.begin() + (2 << i)}); }
// dp : (d/dt)^df(s) (d=D,D-1,...)
vc<mint> dp(1 << (N - D));
dp[0] = f[D];
FOR_R(d, D) {
vc<mint> newdp(1 << (N - d));
newdp[0] = f[d];
vc<ARR> zdp = ranked_zeta<mint, LIM>(dp);
FOR(i, N - d) {
// zs[1<<i:2<<i], zdp[0:1<<i]
vc<ARR> znewdp(1 << i);
FOR(k, 1 << i) {
FOR(p, i + 1) FOR(q, i - p + 1) { znewdp[k][p + q] += zdp[k][p] * zs[i][k][q]; }
}
auto x = ranked_mobius<mint, LIM>(znewdp);
copy(all(x), newdp.begin() + (1 << i));
}
swap(dp, newdp);
}
return dp;
}
// sum_i f_i s^i, s^i is subset-convolution
template <typename mint, int LIM>
vc<mint> sps_composition_poly(vc<mint> f, vc<mint> s) {
const int N = topbit(len(s));
assert(len(s) == (1 << N));
if (f.empty()) return vc<mint>(1 << N, mint(0));
// convert to egf problem
int D = min<int>(len(f) - 1, N);
vc<mint> g(D + 1);
mint c = s[0];
s[0] = 0;
// (x+c)^i
vc<mint> pow(D + 1);
pow[0] = 1;
FOR(i, len(f)) {
FOR(j, D + 1) g[j] += f[i] * pow[j];
FOR_R(j, D + 1) pow[j] = pow[j] * c + (j == 0 ? mint(0) : pow[j - 1]);
}
// to egf
mint factorial = 1;
FOR(j, D + 1) g[j] *= factorial, factorial *= mint(j + 1);
return sps_composition_egf<mint, LIM>(g, s);
}
#line 4 "setfunc/sps_log.hpp"
// exp の逆手順で計算する
template <typename mint, int LIM>
vc<mint> sps_log(vc<mint>& dp) {
const int N = topbit(len(dp));
assert(len(dp) == (1 << N) && dp[0] == mint(1));
vc<mint> s(1 << N);
FOR_R(i, N) {
vc<mint> a = {dp.begin() + (1 << i), dp.begin() + (2 << i)};
vc<mint> b = {dp.begin(), dp.begin() + (1 << i)};
auto RA = ranked_zeta<mint, LIM>(a);
auto RB = ranked_zeta<mint, LIM>(b);
FOR(s, 1 << i) {
auto &f = RA[s], &g = RB[s];
// assert(g[0] == mint(1));
FOR(d, i + 1) { FOR(i, d) f[d] -= f[i] * g[d - i]; }
}
a = ranked_mobius<mint, LIM>(RA);
copy(all(a), s.begin() + (1 << i));
}
return s;
}
#line 3 "graph/count/count_connected_subgraph.hpp"
// O(N^2 2^N)
template <typename T, int LIM>
vc<T> count_connected_subgraph(Graph<int, 0> G) {
int N = G.N;
assert(N <= LIM);
vc<T> pw(G.M + 1, 1);
FOR(i, G.M) pw[i + 1] = pw[i] + pw[i];
// edge
vc<int> E(1 << N);
for (auto& e: G.edges) { E[(1 << e.frm) | (1 << e.to)]++; }
FOR(i, N) FOR(s, 1 << N) {
int t = s | 1 << i;
if (s < t) E[t] += E[s];
}
// any graph
vc<T> dp(1 << N);
FOR(s, 1 << N) dp[s] = pw[E[s]];
// connected
return sps_log<T, LIM>(dp);
}