This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/chromatic.hpp"
#include "graph/base.hpp"
#include "random/base.hpp"
#include "nt/primetest.hpp"
#include "poly/multipoint.hpp"
#include "setfunc/power_projection_of_sps.hpp"
// O(N2^N)
// N=23: https://codeforces.com/contest/908/problem/H
// 上の問題では乱択がめちゃ高速
template <typename Graph, int TRIAL = 0>
int chromatic_number(Graph& G) {
assert(G.is_prepared());
int N = G.N;
vc<int> nbd(N);
FOR(v, N) for (auto&& e: G[v]) nbd[v] |= 1 << e.to;
// s の subset であるような独立集合の数え上げ
vc<int> dp(1 << N);
dp[0] = 1;
FOR(v, N) FOR(s, 1 << v) { dp[s | 1 << v] = dp[s] + dp[s & (~nbd[v])]; }
vi pow(1 << N);
auto solve_p = [&](int p) -> int {
FOR(s, 1 << N) pow[s] = ((N - popcnt(s)) & 1 ? 1 : -1);
FOR(k, 1, N) {
ll sum = 0;
FOR(s, 1 << N) {
pow[s] = pow[s] * dp[s];
if (p) pow[s] %= p;
sum += pow[s];
}
if (p) sum %= p;
if (sum != 0) { return k; }
}
return N;
};
int ANS = 0;
chmax(ANS, solve_p(0));
FOR(TRIAL) {
int p;
while (1) {
p = RNG(1LL << 30, 1LL << 31);
if (primetest(p)) break;
}
chmax(ANS, solve_p(p));
}
return ANS;
}
// O(N^22^N)
template <typename mint, int MAX_N>
vc<mint> chromatic_polynomial(Graph<int, 0> G) {
int N = G.N;
assert(N <= MAX_N);
vc<int> ng(1 << N);
for (auto& e: G.edges) {
int i = e.frm, j = e.to;
ng[(1 << i) | (1 << j)] = 1;
}
FOR(s, 1 << N) {
if (ng[s]) {
FOR(i, N) { ng[s | 1 << i] = 1; }
}
}
vc<mint> f(1 << N);
FOR(s, 1 << N) {
if (!ng[s]) f[s] = 1;
}
vc<mint> wt(1 << N);
wt.back() = 1;
vc<mint> Y = power_projection_of_sps<mint, MAX_N>(wt, f, N + 1);
vc<mint> X(N + 1);
FOR(i, N + 1) X[i] = i;
return multipoint_interpolate<mint>(X, Y);
}
#line 2 "ds/hashmap.hpp"
// u64 -> Val
template <typename Val>
struct HashMap {
// n は入れたいものの個数で ok
HashMap(u32 n = 0) { build(n); }
void build(u32 n) {
u32 k = 8;
while (k < n * 2) k *= 2;
cap = k / 2, mask = k - 1;
key.resize(k), val.resize(k), used.assign(k, 0);
}
// size を保ったまま. size=0 にするときは build すること.
void clear() {
used.assign(len(used), 0);
cap = (mask + 1) / 2;
}
int size() { return len(used) / 2 - cap; }
int index(const u64& k) {
int i = 0;
for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {}
return i;
}
Val& operator[](const u64& k) {
if (cap == 0) extend();
int i = index(k);
if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; }
return val[i];
}
Val get(const u64& k, Val default_value) {
int i = index(k);
return (used[i] ? val[i] : default_value);
}
bool count(const u64& k) {
int i = index(k);
return used[i] && key[i] == k;
}
// f(key, val)
template <typename F>
void enumerate_all(F f) {
FOR(i, len(used)) if (used[i]) f(key[i], val[i]);
}
private:
u32 cap, mask;
vc<u64> key;
vc<Val> val;
vc<bool> used;
u64 hash(u64 x) {
static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count();
x += FIXED_RANDOM;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return (x ^ (x >> 31)) & mask;
}
void extend() {
vc<pair<u64, Val>> dat;
dat.reserve(len(used) / 2 - cap);
FOR(i, len(used)) {
if (used[i]) dat.eb(key[i], val[i]);
}
build(2 * len(dat));
for (auto& [a, b]: dat) (*this)[a] = b;
}
};
#line 3 "graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
static constexpr bool is_directed = directed;
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
#ifdef FASTIO
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
#endif
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
#ifdef FASTIO
void debug() {
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
}
#endif
vc<int> new_idx;
vc<bool> used_e;
// G における頂点 V[i] が、新しいグラフで i になるようにする
// {G, es}
// sum(deg(v)) の計算量になっていて、
// 新しいグラフの n+m より大きい可能性があるので注意
Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
if (len(new_idx) != N) new_idx.assign(N, -1);
int n = len(V);
FOR(i, n) new_idx[V[i]] = i;
Graph<T, directed> G(n);
vc<int> history;
FOR(i, n) {
for (auto&& e: (*this)[V[i]]) {
if (len(used_e) <= e.id) used_e.resize(e.id + 1);
if (used_e[e.id]) continue;
int a = e.frm, b = e.to;
if (new_idx[a] != -1 && new_idx[b] != -1) {
history.eb(e.id);
used_e[e.id] = 1;
int eid = (keep_eid ? e.id : -1);
G.add(new_idx[a], new_idx[b], e.cost, eid);
}
}
}
FOR(i, n) new_idx[V[i]] = -1;
for (auto&& eid: history) used_e[eid] = 0;
G.build();
return G;
}
Graph<T, true> to_directed_tree(int root = -1) {
if (root == -1) root = 0;
assert(!is_directed && prepared && M == N - 1);
Graph<T, true> G1(N);
vc<int> par(N, -1);
auto dfs = [&](auto& dfs, int v) -> void {
for (auto& e: (*this)[v]) {
if (e.to == par[v]) continue;
par[e.to] = v, dfs(dfs, e.to);
}
};
dfs(dfs, root);
for (auto& e: edges) {
int a = e.frm, b = e.to;
if (par[a] == b) swap(a, b);
assert(par[b] == a);
G1.add(a, b, e.cost);
}
G1.build();
return G1;
}
HashMap<int> MP_FOR_EID;
int get_eid(u64 a, u64 b) {
if (len(MP_FOR_EID) == 0) {
MP_FOR_EID.build(N - 1);
for (auto& e: edges) {
u64 a = e.frm, b = e.to;
u64 k = to_eid_key(a, b);
MP_FOR_EID[k] = e.id;
}
}
return MP_FOR_EID.get(to_eid_key(a, b), -1);
}
u64 to_eid_key(u64 a, u64 b) {
if (!directed && a > b) swap(a, b);
return N * a + b;
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 2 "random/base.hpp"
u64 RNG_64() {
static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "mod/mongomery_modint.hpp"
// odd mod.
// x の代わりに rx を持つ
template <int id, typename U1, typename U2>
struct Mongomery_modint {
using mint = Mongomery_modint;
inline static U1 m, r, n2;
static constexpr int W = numeric_limits<U1>::digits;
static void set_mod(U1 mod) {
assert(mod & 1 && mod <= U1(1) << (W - 2));
m = mod, n2 = -U2(m) % m, r = m;
FOR(5) r *= 2 - m * r;
r = -r;
assert(r * m == U1(-1));
}
static U1 reduce(U2 b) { return (b + U2(U1(b) * r) * m) >> W; }
U1 x;
Mongomery_modint() : x(0) {}
Mongomery_modint(U1 x) : x(reduce(U2(x) * n2)){};
U1 val() const {
U1 y = reduce(x);
return y >= m ? y - m : y;
}
mint &operator+=(mint y) {
x = ((x += y.x) >= m ? x - m : x);
return *this;
}
mint &operator-=(mint y) {
x -= (x >= y.x ? y.x : y.x - m);
return *this;
}
mint &operator*=(mint y) {
x = reduce(U2(x) * y.x);
return *this;
}
mint operator+(mint y) const { return mint(*this) += y; }
mint operator-(mint y) const { return mint(*this) -= y; }
mint operator*(mint y) const { return mint(*this) *= y; }
bool operator==(mint y) const {
return (x >= m ? x - m : x) == (y.x >= m ? y.x - m : y.x);
}
bool operator!=(mint y) const { return not operator==(y); }
mint pow(ll n) const {
assert(n >= 0);
mint y = 1, z = *this;
for (; n; n >>= 1, z *= z)
if (n & 1) y *= z;
return y;
}
};
template <int id>
using Mongomery_modint_32 = Mongomery_modint<id, u32, u64>;
template <int id>
using Mongomery_modint_64 = Mongomery_modint<id, u64, u128>;
#line 3 "nt/primetest.hpp"
bool primetest(const u64 x) {
assert(x < u64(1) << 62);
if (x == 2 or x == 3 or x == 5 or x == 7) return true;
if (x % 2 == 0 or x % 3 == 0 or x % 5 == 0 or x % 7 == 0) return false;
if (x < 121) return x > 1;
const u64 d = (x - 1) >> lowbit(x - 1);
using mint = Mongomery_modint_64<202311020>;
mint::set_mod(x);
const mint one(u64(1)), minus_one(x - 1);
auto ok = [&](u64 a) -> bool {
auto y = mint(a).pow(d);
u64 t = d;
while (y != one && y != minus_one && t != x - 1) y *= y, t <<= 1;
if (y != minus_one && t % 2 == 0) return false;
return true;
};
if (x < (u64(1) << 32)) {
for (u64 a: {2, 7, 61})
if (!ok(a)) return false;
} else {
for (u64 a: {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) {
if (!ok(a)) return false;
}
}
return true;
}
#line 2 "poly/multipoint.hpp"
#line 2 "poly/middle_product.hpp"
#line 2 "poly/ntt.hpp"
template <class mint>
void ntt(vector<mint>& a, bool inverse) {
assert(mint::can_ntt());
const int rank2 = mint::ntt_info().fi;
const int mod = mint::get_mod();
static array<mint, 30> root, iroot;
static array<mint, 30> rate2, irate2;
static array<mint, 30> rate3, irate3;
assert(rank2 != -1 && len(a) <= (1 << max(0, rank2)));
static bool prepared = 0;
if (!prepared) {
prepared = 1;
root[rank2] = mint::ntt_info().se;
iroot[rank2] = mint(1) / root[rank2];
FOR_R(i, rank2) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 2; i++) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 3; i++) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
int n = int(a.size());
int h = topbit(n);
assert(n == 1 << h);
if (!inverse) {
int len = 0;
while (len < h) {
if (h - len == 1) {
int p = 1 << (h - len - 1);
mint rot = 1;
FOR(s, 1 << len) {
int offset = s << (h - len);
FOR(i, p) {
auto l = a[i + offset];
auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
rot *= rate2[topbit(~s & -~s)];
}
len++;
} else {
int p = 1 << (h - len - 2);
mint rot = 1, imag = root[2];
for (int s = 0; s < (1 << len); s++) {
mint rot2 = rot * rot;
mint rot3 = rot2 * rot;
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
u64 mod2 = u64(mod) * mod;
u64 a0 = a[i + offset].val;
u64 a1 = u64(a[i + offset + p].val) * rot.val;
u64 a2 = u64(a[i + offset + 2 * p].val) * rot2.val;
u64 a3 = u64(a[i + offset + 3 * p].val) * rot3.val;
u64 a1na3imag = (a1 + mod2 - a3) % mod * imag.val;
u64 na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
rot *= rate3[topbit(~s & -~s)];
}
len += 2;
}
}
} else {
mint coef = mint(1) / mint(len(a));
FOR(i, len(a)) a[i] *= coef;
int len = h;
while (len) {
if (len == 1) {
int p = 1 << (h - len);
mint irot = 1;
FOR(s, 1 << (len - 1)) {
int offset = s << (h - len + 1);
FOR(i, p) {
u64 l = a[i + offset].val;
u64 r = a[i + offset + p].val;
a[i + offset] = l + r;
a[i + offset + p] = (mod + l - r) * irot.val;
}
irot *= irate2[topbit(~s & -~s)];
}
len--;
} else {
int p = 1 << (h - len);
mint irot = 1, iimag = iroot[2];
FOR(s, (1 << (len - 2))) {
mint irot2 = irot * irot;
mint irot3 = irot2 * irot;
int offset = s << (h - len + 2);
for (int i = 0; i < p; i++) {
u64 a0 = a[i + offset + 0 * p].val;
u64 a1 = a[i + offset + 1 * p].val;
u64 a2 = a[i + offset + 2 * p].val;
u64 a3 = a[i + offset + 3 * p].val;
u64 x = (mod + a2 - a3) * iimag.val % mod;
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] = (a0 + mod - a1 + x) * irot.val;
a[i + offset + 2 * p] = (a0 + a1 + 2 * mod - a2 - a3) * irot2.val;
a[i + offset + 3 * p] = (a0 + 2 * mod - a1 - x) * irot3.val;
}
irot *= irate3[topbit(~s & -~s)];
}
len -= 2;
}
}
}
}
#line 2 "mod/crt3.hpp"
constexpr u32 mod_pow_constexpr(u64 a, u64 n, u32 mod) {
a %= mod;
u64 res = 1;
FOR(32) {
if (n & 1) res = res * a % mod;
a = a * a % mod, n /= 2;
}
return res;
}
template <typename T, u32 p0, u32 p1>
T CRT2(u64 a0, u64 a1) {
static_assert(p0 < p1);
static constexpr u64 x0_1 = mod_pow_constexpr(p0, p1 - 2, p1);
u64 c = (a1 - a0 + p1) * x0_1 % p1;
return a0 + c * p0;
}
template <typename T, u32 p0, u32 p1, u32 p2>
T CRT3(u64 a0, u64 a1, u64 a2) {
static_assert(p0 < p1 && p1 < p2);
static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);
static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
static constexpr u64 p01 = u64(p0) * p1;
u64 c = (a1 - a0 + p1) * x1 % p1;
u64 ans_1 = a0 + c * p0;
c = (a2 - ans_1 % p2 + p2) * x2 % p2;
return T(ans_1) + T(c) * T(p01);
}
template <typename T, u32 p0, u32 p1, u32 p2, u32 p3>
T CRT4(u64 a0, u64 a1, u64 a2, u64 a3) {
static_assert(p0 < p1 && p1 < p2 && p2 < p3);
static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);
static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3);
static constexpr u64 p01 = u64(p0) * p1;
u64 c = (a1 - a0 + p1) * x1 % p1;
u64 ans_1 = a0 + c * p0;
c = (a2 - ans_1 % p2 + p2) * x2 % p2;
u128 ans_2 = ans_1 + c * static_cast<u128>(p01);
c = (a3 - ans_2 % p3 + p3) * x3 % p3;
return T(ans_2) + T(c) * T(p01) * T(p2);
}
template <typename T, u32 p0, u32 p1, u32 p2, u32 p3, u32 p4>
T CRT5(u64 a0, u64 a1, u64 a2, u64 a3, u64 a4) {
static_assert(p0 < p1 && p1 < p2 && p2 < p3 && p3 < p4);
static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);
static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3);
static constexpr u64 x4 = mod_pow_constexpr(u64(p0) * p1 % p4 * p2 % p4 * p3 % p4, p4 - 2, p4);
static constexpr u64 p01 = u64(p0) * p1;
static constexpr u64 p23 = u64(p2) * p3;
u64 c = (a1 - a0 + p1) * x1 % p1;
u64 ans_1 = a0 + c * p0;
c = (a2 - ans_1 % p2 + p2) * x2 % p2;
u128 ans_2 = ans_1 + c * static_cast<u128>(p01);
c = static_cast<u64>(a3 - ans_2 % p3 + p3) * x3 % p3;
u128 ans_3 = ans_2 + static_cast<u128>(c * p2) * p01;
c = static_cast<u64>(a4 - ans_3 % p4 + p4) * x4 % p4;
return T(ans_3) + T(c) * T(p01) * T(p23);
}
#line 2 "mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint::raw(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n && n < mod);
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static vector<mint> dat = {1, 1};
if (n < 0) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "mod/modint.hpp"
template <int mod>
struct modint {
static constexpr u32 umod = u32(mod);
static_assert(umod < u32(1) << 31);
u32 val;
static modint raw(u32 v) {
modint x;
x.val = v;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(u32 x) : val(x % umod) {}
constexpr modint(u64 x) : val(x % umod) {}
constexpr modint(u128 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = u64(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
if (n < 0) return inverse().pow(-n);
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 120586241) return {20, 74066978};
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 998244353) return {23, 31};
if (mod == 1004535809) return {21, 582313106};
if (mod == 1012924417) return {21, 368093570};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
fastio::rd(x.val);
x.val %= mod;
// assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
fastio::wt(x.val);
}
#endif
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 6 "poly/middle_product.hpp"
// n, m 次多項式 (n>=m) a, b → n-m 次多項式 c
// c[i] = sum_j b[j]a[i+j]
template <typename mint>
vc<mint> middle_product(vc<mint>& a, vc<mint>& b) {
assert(len(a) >= len(b));
if (b.empty()) return vc<mint>(len(a) - len(b) + 1);
if (min(len(b), len(a) - len(b) + 1) <= 60) {
return middle_product_naive(a, b);
}
if (!(mint::can_ntt())) {
return middle_product_garner(a, b);
} else {
int n = 1 << __lg(2 * len(a) - 1);
vc<mint> fa(n), fb(n);
copy(a.begin(), a.end(), fa.begin());
copy(b.rbegin(), b.rend(), fb.begin());
ntt(fa, 0), ntt(fb, 0);
FOR(i, n) fa[i] *= fb[i];
ntt(fa, 1);
fa.resize(len(a));
fa.erase(fa.begin(), fa.begin() + len(b) - 1);
return fa;
}
}
template <typename mint>
vc<mint> middle_product_garner(vc<mint>& a, vc<mint> b) {
int n = len(a), m = len(b);
if (!n || !m) return {};
static constexpr int p0 = 167772161;
static constexpr int p1 = 469762049;
static constexpr int p2 = 754974721;
using mint0 = modint<p0>;
using mint1 = modint<p1>;
using mint2 = modint<p2>;
vc<mint0> a0(n), b0(m);
vc<mint1> a1(n), b1(m);
vc<mint2> a2(n), b2(m);
FOR(i, n) a0[i] = a[i].val, a1[i] = a[i].val, a2[i] = a[i].val;
FOR(i, m) b0[i] = b[i].val, b1[i] = b[i].val, b2[i] = b[i].val;
auto c0 = middle_product<mint0>(a0, b0);
auto c1 = middle_product<mint1>(a1, b1);
auto c2 = middle_product<mint2>(a2, b2);
vc<mint> c(len(c0));
FOR(i, n - m + 1) {
c[i] = CRT3<mint, p0, p1, p2>(c0[i].val, c1[i].val, c2[i].val);
}
return c;
}
template <typename mint>
vc<mint> middle_product_naive(vc<mint>& a, vc<mint>& b) {
vc<mint> res(len(a) - len(b) + 1);
FOR(i, len(res)) FOR(j, len(b)) res[i] += b[j] * a[i + j];
return res;
}
#line 2 "mod/all_inverse.hpp"
template <typename mint>
vc<mint> all_inverse(vc<mint>& X) {
for (auto&& x: X) assert(x != mint(0));
int N = len(X);
vc<mint> res(N + 1);
res[0] = mint(1);
FOR(i, N) res[i + 1] = res[i] * X[i];
mint t = res.back().inverse();
res.pop_back();
FOR_R(i, N) {
res[i] *= t;
t *= X[i];
}
return res;
}
#line 2 "poly/fps_div.hpp"
#line 2 "poly/count_terms.hpp"
template<typename mint>
int count_terms(const vc<mint>& f){
int t = 0;
FOR(i, len(f)) if(f[i] != mint(0)) ++t;
return t;
}
#line 2 "mod/mod_inv.hpp"
// long でも大丈夫
// (val * x - 1) が mod の倍数になるようにする
// 特に mod=0 なら x=0 が満たす
ll mod_inv(ll val, ll mod) {
if (mod == 0) return 0;
mod = abs(mod);
val %= mod;
if (val < 0) val += mod;
ll a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
if (u < 0) u += mod;
return u;
}
#line 2 "poly/convolution_naive.hpp"
template <class T, typename enable_if<!has_mod<T>::value>::type* = nullptr>
vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) {
int n = int(a.size()), m = int(b.size());
if (n > m) return convolution_naive<T>(b, a);
if (n == 0) return {};
vector<T> ans(n + m - 1);
FOR(i, n) FOR(j, m) ans[i + j] += a[i] * b[j];
return ans;
}
template <class T, typename enable_if<has_mod<T>::value>::type* = nullptr>
vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) {
int n = int(a.size()), m = int(b.size());
if (n > m) return convolution_naive<T>(b, a);
if (n == 0) return {};
vc<T> ans(n + m - 1);
if (n <= 16 && (T::get_mod() < (1 << 30))) {
for (int k = 0; k < n + m - 1; ++k) {
int s = max(0, k - m + 1);
int t = min(n, k + 1);
u64 sm = 0;
for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); }
ans[k] = sm;
}
} else {
for (int k = 0; k < n + m - 1; ++k) {
int s = max(0, k - m + 1);
int t = min(n, k + 1);
u128 sm = 0;
for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); }
ans[k] = T::raw(sm % T::get_mod());
}
}
return ans;
}
#line 2 "poly/convolution_karatsuba.hpp"
// 任意の環でできる
template <typename T>
vc<T> convolution_karatsuba(const vc<T>& f, const vc<T>& g) {
const int thresh = 30;
if (min(len(f), len(g)) <= thresh) return convolution_naive(f, g);
int n = max(len(f), len(g));
int m = ceil(n, 2);
vc<T> f1, f2, g1, g2;
if (len(f) < m) f1 = f;
if (len(f) >= m) f1 = {f.begin(), f.begin() + m};
if (len(f) >= m) f2 = {f.begin() + m, f.end()};
if (len(g) < m) g1 = g;
if (len(g) >= m) g1 = {g.begin(), g.begin() + m};
if (len(g) >= m) g2 = {g.begin() + m, g.end()};
vc<T> a = convolution_karatsuba(f1, g1);
vc<T> b = convolution_karatsuba(f2, g2);
FOR(i, len(f2)) f1[i] += f2[i];
FOR(i, len(g2)) g1[i] += g2[i];
vc<T> c = convolution_karatsuba(f1, g1);
vc<T> F(len(f) + len(g) - 1);
assert(2 * m + len(b) <= len(F));
FOR(i, len(a)) F[i] += a[i], c[i] -= a[i];
FOR(i, len(b)) F[2 * m + i] += b[i], c[i] -= b[i];
if (c.back() == T(0)) c.pop_back();
FOR(i, len(c)) if (c[i] != T(0)) F[m + i] += c[i];
return F;
}
#line 8 "poly/convolution.hpp"
template <class mint>
vector<mint> convolution_ntt(vector<mint> a, vector<mint> b) {
if (a.empty() || b.empty()) return {};
int n = int(a.size()), m = int(b.size());
int sz = 1;
while (sz < n + m - 1) sz *= 2;
// sz = 2^k のときの高速化。分割統治的なやつで損しまくるので。
if ((n + m - 3) <= sz / 2) {
auto a_last = a.back(), b_last = b.back();
a.pop_back(), b.pop_back();
auto c = convolution(a, b);
c.resize(n + m - 1);
c[n + m - 2] = a_last * b_last;
FOR(i, len(a)) c[i + len(b)] += a[i] * b_last;
FOR(i, len(b)) c[i + len(a)] += b[i] * a_last;
return c;
}
a.resize(sz), b.resize(sz);
bool same = a == b;
ntt(a, 0);
if (same) {
b = a;
} else {
ntt(b, 0);
}
FOR(i, sz) a[i] *= b[i];
ntt(a, 1);
a.resize(n + m - 1);
return a;
}
template <typename mint>
vector<mint> convolution_garner(const vector<mint>& a, const vector<mint>& b) {
int n = len(a), m = len(b);
if (!n || !m) return {};
static constexpr int p0 = 167772161;
static constexpr int p1 = 469762049;
static constexpr int p2 = 754974721;
using mint0 = modint<p0>;
using mint1 = modint<p1>;
using mint2 = modint<p2>;
vc<mint0> a0(n), b0(m);
vc<mint1> a1(n), b1(m);
vc<mint2> a2(n), b2(m);
FOR(i, n) a0[i] = a[i].val, a1[i] = a[i].val, a2[i] = a[i].val;
FOR(i, m) b0[i] = b[i].val, b1[i] = b[i].val, b2[i] = b[i].val;
auto c0 = convolution_ntt<mint0>(a0, b0);
auto c1 = convolution_ntt<mint1>(a1, b1);
auto c2 = convolution_ntt<mint2>(a2, b2);
vc<mint> c(len(c0));
FOR(i, n + m - 1) { c[i] = CRT3<mint, p0, p1, p2>(c0[i].val, c1[i].val, c2[i].val); }
return c;
}
vector<ll> convolution(vector<ll> a, vector<ll> b) {
int n = len(a), m = len(b);
if (!n || !m) return {};
if (min(n, m) <= 2500) return convolution_naive(a, b);
ll mi_a = MIN(a), mi_b = MIN(b);
for (auto& x: a) x -= mi_a;
for (auto& x: b) x -= mi_b;
assert(MAX(a) * MAX(b) <= 1e18);
auto Ac = cumsum<ll>(a), Bc = cumsum<ll>(b);
vi res(n + m - 1);
for (int k = 0; k < n + m - 1; ++k) {
int s = max(0, k - m + 1);
int t = min(n, k + 1);
res[k] += (t - s) * mi_a * mi_b;
res[k] += mi_a * (Bc[k - s + 1] - Bc[k - t + 1]);
res[k] += mi_b * (Ac[t] - Ac[s]);
}
static constexpr u32 MOD1 = 1004535809;
static constexpr u32 MOD2 = 1012924417;
using mint1 = modint<MOD1>;
using mint2 = modint<MOD2>;
vc<mint1> a1(n), b1(m);
vc<mint2> a2(n), b2(m);
FOR(i, n) a1[i] = a[i], a2[i] = a[i];
FOR(i, m) b1[i] = b[i], b2[i] = b[i];
auto c1 = convolution_ntt<mint1>(a1, b1);
auto c2 = convolution_ntt<mint2>(a2, b2);
FOR(i, n + m - 1) { res[i] += CRT2<u64, MOD1, MOD2>(c1[i].val, c2[i].val); }
return res;
}
template <typename mint>
vc<mint> convolution(const vc<mint>& a, const vc<mint>& b) {
int n = len(a), m = len(b);
if (!n || !m) return {};
if (mint::can_ntt()) {
if (min(n, m) <= 50) return convolution_karatsuba<mint>(a, b);
return convolution_ntt(a, b);
}
if (min(n, m) <= 200) return convolution_karatsuba<mint>(a, b);
return convolution_garner(a, b);
}
#line 4 "poly/fps_inv.hpp"
template <typename mint>
vc<mint> fps_inv_sparse(const vc<mint>& f) {
int N = len(f);
vc<pair<int, mint>> dat;
FOR(i, 1, N) if (f[i] != mint(0)) dat.eb(i, f[i]);
vc<mint> g(N);
mint g0 = mint(1) / f[0];
g[0] = g0;
FOR(n, 1, N) {
mint rhs = 0;
for (auto&& [k, fk]: dat) {
if (k > n) break;
rhs -= fk * g[n - k];
}
g[n] = rhs * g0;
}
return g;
}
template <typename mint>
vc<mint> fps_inv_dense_ntt(const vc<mint>& F) {
vc<mint> G = {mint(1) / F[0]};
ll N = len(F), n = 1;
G.reserve(N);
while (n < N) {
vc<mint> f(2 * n), g(2 * n);
FOR(i, min(N, 2 * n)) f[i] = F[i];
FOR(i, n) g[i] = G[i];
ntt(f, false), ntt(g, false);
FOR(i, 2 * n) f[i] *= g[i];
ntt(f, true);
FOR(i, n) f[i] = 0;
ntt(f, false);
FOR(i, 2 * n) f[i] *= g[i];
ntt(f, true);
FOR(i, n, min(N, 2 * n)) G.eb(-f[i]);
n *= 2;
}
return G;
}
template <typename mint>
vc<mint> fps_inv_dense(const vc<mint>& F) {
if (mint::can_ntt()) return fps_inv_dense_ntt(F);
const int N = len(F);
vc<mint> R = {mint(1) / F[0]};
vc<mint> p;
int m = 1;
while (m < N) {
p = convolution(R, R);
p.resize(m + m);
vc<mint> f = {F.begin(), F.begin() + min(m + m, N)};
p = convolution(p, f);
R.resize(m + m);
FOR(i, m + m) R[i] = R[i] + R[i] - p[i];
m += m;
}
R.resize(N);
return R;
}
template <typename mint>
vc<mint> fps_inv(const vc<mint>& f) {
assert(f[0] != mint(0));
int n = count_terms(f);
int t = (mint::can_ntt() ? 160 : 820);
return (n <= t ? fps_inv_sparse<mint>(f) : fps_inv_dense<mint>(f));
}
#line 5 "poly/fps_div.hpp"
// f/g. f の長さで出力される.
template <typename mint, bool SPARSE = false>
vc<mint> fps_div(vc<mint> f, vc<mint> g) {
if (SPARSE || count_terms(g) < 200) return fps_div_sparse(f, g);
int n = len(f);
g.resize(n);
g = fps_inv<mint>(g);
f = convolution(f, g);
f.resize(n);
return f;
}
// f/g ただし g は sparse
template <typename mint>
vc<mint> fps_div_sparse(vc<mint> f, vc<mint>& g) {
if (g[0] != mint(1)) {
mint cf = g[0].inverse();
for (auto&& x: f) x *= cf;
for (auto&& x: g) x *= cf;
}
vc<pair<int, mint>> dat;
FOR(i, 1, len(g)) if (g[i] != mint(0)) dat.eb(i, -g[i]);
FOR(i, len(f)) {
for (auto&& [j, x]: dat) {
if (i >= j) f[i] += x * f[i - j];
}
}
return f;
}
#line 2 "poly/ntt_doubling.hpp"
#line 4 "poly/ntt_doubling.hpp"
// 2^k 次多項式の長さ 2^k が与えられるので 2^k+1 にする
template <typename mint, bool transposed = false>
void ntt_doubling(vector<mint>& a) {
static array<mint, 30> root;
static bool prepared = 0;
if (!prepared) {
prepared = 1;
const int rank2 = mint::ntt_info().fi;
root[rank2] = mint::ntt_info().se;
FOR_R(i, rank2) { root[i] = root[i + 1] * root[i + 1]; }
}
if constexpr (!transposed) {
const int M = (int)a.size();
auto b = a;
ntt(b, 1);
mint r = 1, zeta = root[topbit(2 * M)];
FOR(i, M) b[i] *= r, r *= zeta;
ntt(b, 0);
copy(begin(b), end(b), back_inserter(a));
} else {
const int M = len(a) / 2;
vc<mint> tmp = {a.begin(), a.begin() + M};
a = {a.begin() + M, a.end()};
transposed_ntt(a, 0);
mint r = 1, zeta = root[topbit(2 * M)];
FOR(i, M) a[i] *= r, r *= zeta;
transposed_ntt(a, 1);
FOR(i, M) a[i] += tmp[i];
}
}
#line 2 "poly/transposed_ntt.hpp"
template <class mint>
void transposed_ntt(vector<mint>& a, bool inverse) {
assert(mint::can_ntt());
const int rank2 = mint::ntt_info().fi;
const int mod = mint::get_mod();
static array<mint, 30> root, iroot;
static array<mint, 30> rate2, irate2;
static array<mint, 30> rate3, irate3;
assert(rank2 != -1 && len(a) <= (1 << max(0, rank2)));
static bool prepared = 0;
if (!prepared) {
prepared = 1;
root[rank2] = mint::ntt_info().se;
iroot[rank2] = mint(1) / root[rank2];
FOR_R(i, rank2) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 2; i++) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 3; i++) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
int n = int(a.size());
int h = topbit(n);
assert(n == 1 << h);
if (!inverse) {
int len = h;
while (len > 0) {
if (len == 1) {
int p = 1 << (h - len);
mint rot = 1;
FOR(s, 1 << (len - 1)) {
int offset = s << (h - len + 1);
FOR(i, p) {
u64 l = a[i + offset].val;
u64 r = a[i + offset + p].val;
a[i + offset] = l + r;
a[i + offset + p] = (mod + l - r) * rot.val;
}
rot *= rate2[topbit(~s & -~s)];
}
len--;
} else {
int p = 1 << (h - len);
mint rot = 1, imag = root[2];
FOR(s, (1 << (len - 2))) {
int offset = s << (h - len + 2);
mint rot2 = rot * rot;
mint rot3 = rot2 * rot;
for (int i = 0; i < p; i++) {
u64 a0 = a[i + offset + 0 * p].val;
u64 a1 = a[i + offset + 1 * p].val;
u64 a2 = a[i + offset + 2 * p].val;
u64 a3 = a[i + offset + 3 * p].val;
u64 x = (mod + a2 - a3) * imag.val % mod;
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] = (a0 + mod - a1 + x) * rot.val;
a[i + offset + 2 * p] = (a0 + a1 + 2 * mod - a2 - a3) * rot2.val;
a[i + offset + 3 * p] = (a0 + 2 * mod - a1 - x) * rot3.val;
}
rot *= rate3[topbit(~s & -~s)];
}
len -= 2;
}
}
} else {
mint coef = mint(1) / mint(len(a));
FOR(i, len(a)) a[i] *= coef;
int len = 0;
while (len < h) {
if (len == h - 1) {
int p = 1 << (h - len - 1);
mint irot = 1;
FOR(s, 1 << len) {
int offset = s << (h - len);
FOR(i, p) {
auto l = a[i + offset];
auto r = a[i + offset + p] * irot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
irot *= irate2[topbit(~s & -~s)];
}
len++;
} else {
int p = 1 << (h - len - 2);
mint irot = 1, iimag = iroot[2];
for (int s = 0; s < (1 << len); s++) {
mint irot2 = irot * irot;
mint irot3 = irot2 * irot;
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
u64 mod2 = u64(mod) * mod;
u64 a0 = a[i + offset].val;
u64 a1 = u64(a[i + offset + p].val) * irot.val;
u64 a2 = u64(a[i + offset + 2 * p].val) * irot2.val;
u64 a3 = u64(a[i + offset + 3 * p].val) * irot3.val;
u64 a1na3imag = (a1 + mod2 - a3) % mod * iimag.val;
u64 na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
irot *= irate3[topbit(~s & -~s)];
}
len += 2;
}
}
}
}
#line 8 "poly/multipoint.hpp"
template <typename mint>
struct SubproductTree {
int m;
int sz;
vc<vc<mint>> T;
SubproductTree(const vc<mint>& x) {
m = len(x);
sz = 1;
while (sz < m) sz *= 2;
T.resize(2 * sz);
FOR(i, sz) T[sz + i] = {1, (i < m ? -x[i] : 0)};
FOR3_R(i, 1, sz) T[i] = convolution(T[2 * i], T[2 * i + 1]);
}
vc<mint> evaluation(vc<mint> f) {
int n = len(f);
if (n == 0) return vc<mint>(m, mint(0));
f.resize(2 * n - 1);
vc<vc<mint>> g(2 * sz);
g[1] = T[1];
g[1].resize(n);
g[1] = fps_inv(g[1]);
g[1] = middle_product(f, g[1]);
g[1].resize(sz);
FOR3(i, 1, sz) {
g[2 * i] = middle_product(g[i], T[2 * i + 1]);
g[2 * i + 1] = middle_product(g[i], T[2 * i]);
}
vc<mint> vals(m);
FOR(i, m) vals[i] = g[sz + i][0];
return vals;
}
vc<mint> interpolation(vc<mint>& y) {
assert(len(y) == m);
vc<mint> a(m);
FOR(i, m) a[i] = T[1][m - i - 1] * (i + 1);
a = evaluation(a);
vc<vc<mint>> t(2 * sz);
FOR(i, sz) t[sz + i] = {(i < m ? y[i] / a[i] : 0)};
FOR3_R(i, 1, sz) {
t[i] = convolution(t[2 * i], T[2 * i + 1]);
auto tt = convolution(t[2 * i + 1], T[2 * i]);
FOR(k, len(t[i])) t[i][k] += tt[k];
}
t[1].resize(m);
reverse(all(t[1]));
return t[1];
}
};
template <typename mint>
vc<mint> multipoint_evaluation_ntt(vc<mint> f, vc<mint> point) {
using poly = vc<mint>;
int n = 1, k = 0;
while (n < len(point)) n *= 2, ++k;
vv(mint, F, k + 1, 2 * n);
FOR(i, len(point)) F[0][2 * i] = -point[i];
FOR(d, k) {
int b = 1 << d;
for (int L = 0; L < 2 * n; L += 4 * b) {
poly f1 = {F[d].begin() + L, F[d].begin() + L + b};
poly f2 = {F[d].begin() + L + 2 * b, F[d].begin() + L + 3 * b};
ntt_doubling(f1), ntt_doubling(f2);
FOR(i, b) f1[i] += 1, f2[i] += 1;
FOR(i, b, 2 * b) f1[i] -= 1, f2[i] -= 1;
copy(all(f1), F[d].begin() + L);
copy(all(f2), F[d].begin() + L + 2 * b);
FOR(i, 2 * b) { F[d + 1][L + i] = f1[i] * f2[i] - 1; }
}
}
vc<mint> P = {F[k].begin(), F[k].begin() + n};
ntt(P, 1), P.eb(1), reverse(all(P)), P.resize(len(f)), P = fps_inv<mint>(P);
f.resize(n + len(P) - 1), f = middle_product<mint>(f, P), reverse(all(f));
transposed_ntt(f, 1);
vc<mint>& G = f;
FOR_R(d, k) {
vc<mint> nxt_G(n);
int b = 1 << d;
for (int L = 0; L < n; L += 2 * b) {
vc<mint> g1(2 * b), g2(2 * b);
FOR(i, 2 * b) { g1[i] = G[L + i] * F[d][2 * L + 2 * b + i]; }
FOR(i, 2 * b) { g2[i] = G[L + i] * F[d][2 * L + i]; }
ntt_doubling<mint, true>(g1), ntt_doubling<mint, true>(g2);
FOR(i, b) { nxt_G[L + i] = g1[i], nxt_G[L + b + i] = g2[i]; }
}
swap(G, nxt_G);
}
G.resize(len(point));
return G;
}
template <typename mint>
vc<mint> multipoint_eval(vc<mint>& f, vc<mint>& x) {
if (x.empty()) return {};
if (mint::can_ntt()) return multipoint_evaluation_ntt(f, x);
SubproductTree<mint> F(x);
return F.evaluation(f);
}
template <typename mint>
vc<mint> multipoint_interpolate(vc<mint>& x, vc<mint>& y) {
if (x.empty()) return {};
SubproductTree<mint> F(x);
return F.interpolation(y);
}
// calculate f(ar^k) for 0 <= k < m
template <typename mint>
vc<mint> multipoint_eval_on_geom_seq(vc<mint> f, mint a, mint r, int m) {
const int n = len(f);
if (m == 0) return {};
auto eval = [&](mint x) -> mint {
mint fx = 0;
mint pow = 1;
FOR(i, n) fx += f[i] * pow, pow *= x;
return fx;
};
if (r == mint(0)) {
vc<mint> res(m);
FOR(i, 1, m) res[i] = f[0];
res[0] = eval(a);
return res;
}
if (n < 60 || m < 60) {
vc<mint> res(m);
FOR(i, m) res[i] = eval(a), a *= r;
return res;
}
assert(r != mint(0));
// a == 1 に帰着
mint pow_a = 1;
FOR(i, n) f[i] *= pow_a, pow_a *= a;
auto calc = [&](mint r, int m) -> vc<mint> {
// r^{t_i} の計算
vc<mint> res(m);
mint pow = 1;
res[0] = 1;
FOR(i, m - 1) {
res[i + 1] = res[i] * pow;
pow *= r;
}
return res;
};
vc<mint> A = calc(r, n + m - 1), B = calc(r.inverse(), max(n, m));
FOR(i, n) f[i] *= B[i];
f = middle_product(A, f);
FOR(i, m) f[i] *= B[i];
return f;
}
// Y[i] = f(ar^i)
template <typename mint>
vc<mint> multipoint_interpolate_on_geom_seq(vc<mint> Y, mint a, mint r) {
const int n = len(Y);
if (n == 0) return {};
if (n == 1) return {Y[0]};
assert(r != mint(0));
mint ir = r.inverse();
vc<mint> POW(n + n - 1), tPOW(n + n - 1);
POW[0] = tPOW[0] = mint(1);
FOR(i, n + n - 2) POW[i + 1] = POW[i] * r, tPOW[i + 1] = tPOW[i] * POW[i];
vc<mint> iPOW(n + n - 1), itPOW(n + n - 1);
iPOW[0] = itPOW[0] = mint(1);
FOR(i, n) iPOW[i + 1] = iPOW[i] * ir, itPOW[i + 1] = itPOW[i] * iPOW[i];
// prod_[1,i] 1-r^k
vc<mint> S(n);
S[0] = mint(1);
FOR(i, 1, n) S[i] = S[i - 1] * (mint(1) - POW[i]);
vc<mint> iS = all_inverse<mint>(S);
mint sn = S[n - 1] * (mint(1) - POW[n]);
FOR(i, n) {
Y[i] = Y[i] * tPOW[n - 1 - i] * itPOW[n - 1] * iS[i] * iS[n - 1 - i];
if (i % 2 == 1) Y[i] = -Y[i];
}
// sum_i Y[i] / 1-r^ix
FOR(i, n) Y[i] *= itPOW[i];
vc<mint> f = middle_product(tPOW, Y);
FOR(i, n) f[i] *= itPOW[i];
// prod 1-r^ix
vc<mint> g(n);
g[0] = mint(1);
FOR(i, 1, n) {
g[i] = tPOW[i] * sn * iS[i] * iS[n - i];
if (i % 2 == 1) g[i] = -g[i];
}
f = convolution<mint>(f, g);
f.resize(n);
reverse(all(f));
mint ia = a.inverse();
mint pow = 1;
FOR(i, n) f[i] *= pow, pow *= ia;
return f;
}
#line 2 "setfunc/subset_convolution.hpp"
#line 2 "setfunc/ranked_zeta.hpp"
template <typename T, int LIM>
vc<array<T, LIM + 1>> ranked_zeta(const vc<T>& f) {
int n = topbit(len(f));
assert(n <= LIM);
assert(len(f) == 1 << n);
vc<array<T, LIM + 1>> Rf(1 << n);
for (int s = 0; s < (1 << n); ++s) Rf[s][popcnt(s)] = f[s];
for (int i = 0; i < n; ++i) {
int w = 1 << i;
for (int p = 0; p < (1 << n); p += 2 * w) {
for (int s = p; s < p + w; ++s) {
int t = s | 1 << i;
for (int d = 0; d <= n; ++d) Rf[t][d] += Rf[s][d];
}
}
}
return Rf;
}
template <typename T, int LIM>
vc<T> ranked_mobius(vc<array<T, LIM + 1>>& Rf) {
int n = topbit(len(Rf));
assert(len(Rf) == 1 << n);
for (int i = 0; i < n; ++i) {
int w = 1 << i;
for (int p = 0; p < (1 << n); p += 2 * w) {
for (int s = p; s < p + w; ++s) {
int t = s | 1 << i;
for (int d = 0; d <= n; ++d) Rf[t][d] -= Rf[s][d];
}
}
}
vc<T> f(1 << n);
for (int s = 0; s < (1 << n); ++s) f[s] = Rf[s][popcnt(s)];
return f;
}
#line 4 "setfunc/subset_convolution.hpp"
template <typename T, int LIM = 20>
vc<T> subset_convolution_square(const vc<T>& A) {
auto RA = ranked_zeta<T, LIM>(A);
int n = topbit(len(RA));
FOR(s, len(RA)) {
auto& f = RA[s];
FOR_R(d, n + 1) {
T x = 0;
FOR(i, d + 1) x += f[i] * f[d - i];
f[d] = x;
}
}
return ranked_mobius<T, LIM>(RA);
}
template <typename T, int LIM = 20>
vc<T> subset_convolution(const vc<T>& A, const vc<T>& B) {
if (A == B) return subset_convolution_square(A);
auto RA = ranked_zeta<T, LIM>(A);
auto RB = ranked_zeta<T, LIM>(B);
int n = topbit(len(RA));
FOR(s, len(RA)) {
auto &f = RA[s], &g = RB[s];
FOR_R(d, n + 1) {
T x = 0;
FOR(i, d + 1) x += f[i] * g[d - i];
f[d] = x;
}
}
return ranked_mobius<T, LIM>(RA);
}
#line 3 "setfunc/power_projection_of_sps.hpp"
// for fixed sps s, consider linear map F:a->b = subset-conv(a,s)
// given x, calculate transpose(F)(x)
template <typename mint, int LIM>
vc<mint> transposed_subset_convolution(vc<mint> s, vc<mint> x) {
/*
sum_{j}x_jb_j = sum_{i subset j}x_ja_is_{j-i} = sum_{i}y_ia_i.
y_i = sum_{j supset i}x_js_{j-i}
(rev y)_i = sum_{j subset i}(rev x)_js_{i-j}
y = rev(conv(rev x), s)
*/
reverse(all(x));
x = subset_convolution<mint, LIM>(x, s);
reverse(all(x));
return x;
}
// assume s[0]==0
// calculate sum_i wt_i(s^k/k!)_i for k=0,1,...,N
template <typename mint, int LIM>
vc<mint> power_projection_of_sps_egf(vc<mint> wt, vc<mint>& s) {
const int N = topbit(len(s));
assert(len(s) == (1 << N) && len(wt) == (1 << N) && s[0] == mint(0));
vc<mint> y(N + 1);
y[0] = wt[0];
auto& dp = wt;
FOR(i, N) {
vc<mint> newdp(1 << (N - 1 - i));
FOR(j, N - i) {
vc<mint> a = {s.begin() + (1 << j), s.begin() + (2 << j)};
vc<mint> b = {dp.begin() + (1 << j), dp.begin() + (2 << j)};
b = transposed_subset_convolution<mint, LIM>(a, b);
FOR(k, len(b)) newdp[k] += b[k];
}
swap(dp, newdp);
y[1 + i] = dp[0];
}
return y;
}
// calculate sum_i x_i(s^k)_i for k=0,1,...,M-1
template <typename mint, int LIM>
vc<mint> power_projection_of_sps(vc<mint> wt, vc<mint> s, int M) {
const int N = topbit(len(s));
assert(len(s) == (1 << N) && len(wt) == (1 << N));
mint c = s[0];
s[0] -= c;
vc<mint> x = power_projection_of_sps_egf<mint, LIM>(wt, s);
vc<mint> g(M);
mint pow = 1;
FOR(i, M) { g[i] = pow * fact_inv<mint>(i), pow *= c; }
x = convolution<mint>(x, g);
x.resize(M);
FOR(i, M) x[i] *= fact<mint>(i);
return x;
}
#line 6 "graph/chromatic.hpp"
// O(N2^N)
// N=23: https://codeforces.com/contest/908/problem/H
// 上の問題では乱択がめちゃ高速
template <typename Graph, int TRIAL = 0>
int chromatic_number(Graph& G) {
assert(G.is_prepared());
int N = G.N;
vc<int> nbd(N);
FOR(v, N) for (auto&& e: G[v]) nbd[v] |= 1 << e.to;
// s の subset であるような独立集合の数え上げ
vc<int> dp(1 << N);
dp[0] = 1;
FOR(v, N) FOR(s, 1 << v) { dp[s | 1 << v] = dp[s] + dp[s & (~nbd[v])]; }
vi pow(1 << N);
auto solve_p = [&](int p) -> int {
FOR(s, 1 << N) pow[s] = ((N - popcnt(s)) & 1 ? 1 : -1);
FOR(k, 1, N) {
ll sum = 0;
FOR(s, 1 << N) {
pow[s] = pow[s] * dp[s];
if (p) pow[s] %= p;
sum += pow[s];
}
if (p) sum %= p;
if (sum != 0) { return k; }
}
return N;
};
int ANS = 0;
chmax(ANS, solve_p(0));
FOR(TRIAL) {
int p;
while (1) {
p = RNG(1LL << 30, 1LL << 31);
if (primetest(p)) break;
}
chmax(ANS, solve_p(p));
}
return ANS;
}
// O(N^22^N)
template <typename mint, int MAX_N>
vc<mint> chromatic_polynomial(Graph<int, 0> G) {
int N = G.N;
assert(N <= MAX_N);
vc<int> ng(1 << N);
for (auto& e: G.edges) {
int i = e.frm, j = e.to;
ng[(1 << i) | (1 << j)] = 1;
}
FOR(s, 1 << N) {
if (ng[s]) {
FOR(i, N) { ng[s | 1 << i] = 1; }
}
}
vc<mint> f(1 << N);
FOR(s, 1 << N) {
if (!ng[s]) f[s] = 1;
}
vc<mint> wt(1 << N);
wt.back() = 1;
vc<mint> Y = power_projection_of_sps<mint, MAX_N>(wt, f, N + 1);
vc<mint> X(N + 1);
FOR(i, N + 1) X[i] = i;
return multipoint_interpolate<mint>(X, Y);
}