This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "graph/centroid_decomposition.hpp"
#include "graph/base.hpp" #include "graph/shortest_path/bfs01.hpp" // 頂点ベースの重心分解 // f(par, V, indptr) template <typename F> void centroid_decomposition_0_dfs(vc<int>& par, vc<int>& vs, F f) { const int N = len(par); assert(N >= 1); int c = -1; vc<int> sz(N, 1); FOR_R(i, N) { if (sz[i] >= ceil<int>(N, 2)) { c = i; break; } sz[par[i]] += sz[i]; } vc<int> color(N); vc<int> V = {c}; int nc = 1; FOR(v, 1, N) { if (par[v] == c) { V.eb(v), color[v] = nc++; } } if (c > 0) { for (int a = par[c]; a != -1; a = par[a]) { color[a] = nc, V.eb(a); } ++nc; } FOR(i, N) { if (i != c && color[i] == 0) color[i] = color[par[i]], V.eb(i); } vc<int> indptr(nc + 1); FOR(i, N) indptr[1 + color[i]]++; FOR(i, nc) indptr[i + 1] += indptr[i]; vc<int> counter = indptr; vc<int> ord(N); for (auto& v: V) { ord[counter[color[v]]++] = v; } vc<int> new_idx(N); FOR(i, N) new_idx[ord[i]] = i; vc<int> name(N); FOR(i, N) name[new_idx[i]] = vs[i]; { vc<int> tmp(N, -1); FOR(i, 1, N) { int a = new_idx[i], b = new_idx[par[i]]; if (a > b) swap(a, b); tmp[b] = a; } swap(par, tmp); } f(par, name, indptr); FOR(k, 1, nc) { int L = indptr[k], R = indptr[k + 1]; vc<int> par1(R - L, -1); vc<int> name1(R - L, -1); name1[0] = name[0]; FOR(i, L, R) name1[i - L] = name[i]; FOR(i, L, R) { par1[i - L] = max(par[i] - L, -1); } centroid_decomposition_0_dfs(par1, name1, f); } } /* https://maspypy.com/%e9%87%8d%e5%bf%83%e5%88%86%e8%a7%a3%e3%83%bb1-3%e9%87%8d%e5%bf%83%e5%88%86%e8%a7%a3%e3%81%ae%e3%81%8a%e7%b5%b5%e6%8f%8f%e3%81%8d centroid_decomposition_1:長さ 1 以上のパス全体 f(par, V, L1, R1, L2, R2) [L1, R1): color 1 / [L2, R2): color 2 */ template <typename F> void centroid_decomposition_1_dfs(vc<int>& par, vc<int> vs, F f) { const int N = len(par); assert(N > 1); if (N == 2) { vc<int> p = {-1, 0}; vc<int> v = {vs[0], vs[1]}; f(p, vs, 0, 1, 1, 2); return; } int c = -1; vc<int> sz(N, 1); FOR_R(i, N) { if (sz[i] >= ceil<int>(N, 2)) { c = i; break; } sz[par[i]] += sz[i]; } vc<int> color(N, -1); int take = 0; vc<int> ord(N, -1); ord[c] = 0; int p = 1; FOR(v, 1, N) { if (par[v] == c && take + sz[v] <= floor<int>(N - 1, 2)) { color[v] = 0, ord[v] = p++, take += sz[v]; } } FOR(i, 1, N) { if (color[par[i]] == 0) color[i] = 0, ord[i] = p++; } int n0 = p - 1; for (int a = par[c]; a != -1; a = par[a]) { color[a] = 1, ord[a] = p++; } FOR(i, N) { if (i != c && color[i] == -1) color[i] = 1, ord[i] = p++; } assert(p == N); int n1 = N - 1 - n0; vc<int> par0(n0 + 1, -1), par1(n1 + 1, -1), par2(N, -1); vc<int> V0(n0 + 1), V1(n1 + 1), V2(N); FOR(v, N) { int i = ord[v]; V2[i] = vs[v]; if (color[v] != 1) { V0[i] = vs[v]; } if (color[v] != 0) { V1[max(i - n0, 0)] = vs[v]; } } FOR(v, 1, N) { int a = ord[v], b = ord[par[v]]; if (a > b) swap(a, b); par2[b] = a; if (color[v] != 1 && color[par[v]] != 1) par0[b] = a; if (color[v] != 0 && color[par[v]] != 0) par1[max(b - n0, 0)] = max(a - n0, 0); } f(par2, V2, 1, 1 + n0, 1 + n0, 1 + n0 + n1); centroid_decomposition_1_dfs(par0, V0, f); centroid_decomposition_1_dfs(par1, V1, f); } /* https://maspypy.com/%e9%87%8d%e5%bf%83%e5%88%86%e8%a7%a3%e3%83%bb1-3%e9%87%8d%e5%bf%83%e5%88%86%e8%a7%a3%e3%81%ae%e3%81%8a%e7%b5%b5%e6%8f%8f%e3%81%8d f(par, V, color) color in [-1,0,1], -1 is virtual. */ template <typename F> void centroid_decomposition_2_dfs(vc<int>& par, vc<int>& vs, vc<int>& real, F f) { const int N = len(par); assert(N > 1); if (N == 2) { if (real[0] && real[1]) { vc<int> color = {0, 1}; f(par, vs, color); } return; } int c = -1; vc<int> sz(N, 1); FOR_R(i, N) { if (sz[i] >= ceil<int>(N, 2)) { c = i; break; } sz[par[i]] += sz[i]; } vc<int> color(N, -1); int take = 0; vc<int> ord(N, -1); ord[c] = 0; int p = 1; FOR(v, 1, N) { if (par[v] == c && take + sz[v] <= floor<int>(N - 1, 2)) { color[v] = 0, ord[v] = p++, take += sz[v]; } } FOR(i, 1, N) { if (color[par[i]] == 0) color[i] = 0, ord[i] = p++; } int n0 = p - 1; for (int a = par[c]; a != -1; a = par[a]) { color[a] = 1, ord[a] = p++; } FOR(i, N) { if (i != c && color[i] == -1) color[i] = 1, ord[i] = p++; } assert(p == N); int n1 = N - 1 - n0; vc<int> par0(n0 + 1, -1), par1(n1 + 1, -1), par2(N, -1); vc<int> V0(n0 + 1), V1(n1 + 1), V2(N); vc<int> rea0(n0 + 1), rea1(n1 + 1), rea2(N); FOR(v, N) { int i = ord[v]; V2[i] = vs[v], rea2[i] = real[v]; if (color[v] != 1) { V0[i] = vs[v], rea0[i] = real[v]; } if (color[v] != 0) { V1[max(i - n0, 0)] = vs[v], rea1[max(i - n0, 0)] = real[v]; } } FOR(v, 1, N) { int a = ord[v], b = ord[par[v]]; if (a > b) swap(a, b); par2[b] = a; if (color[v] != 1 && color[par[v]] != 1) par0[b] = a; if (color[v] != 0 && color[par[v]] != 0) par1[max(b - n0, 0)] = max(a - n0, 0); } color.assign(N, -1); FOR(i, 1, N) if (rea2[i]) color[i] = (i <= n0 ? 0 : 1); if (real[c]) color[0] = 2, rea0[0] = rea1[0] = rea2[0] = 0; f(par2, V2, color); centroid_decomposition_2_dfs(par0, V0, rea0, f); centroid_decomposition_2_dfs(par1, V1, rea1, f); } // 0: f(par, V, indptr) // 1: f(par, V, L1, R1, L2, R2) // 2: f(par, V, color) template <int MODE, typename GT, typename F> void centroid_decomposition(GT& G, F f) { static_assert(!GT::is_directed); const int N = G.N; if (MODE != 0 && N == 1) return; vc<int> V(N), par(N, -1); int l = 0, r = 0; V[r++] = 0; while (l < r) { int v = V[l++]; for (auto& e: G[v]) { if (e.to != par[v]) V[r++] = e.to, par[e.to] = v; } } assert(r == N); vc<int> new_idx(N); FOR(i, N) new_idx[V[i]] = i; vc<int> tmp(N, -1); FOR(i, 1, N) { int j = par[i]; tmp[new_idx[i]] = new_idx[j]; } swap(par, tmp); static_assert(MODE == 0 || MODE == 1 || MODE == 2); if constexpr (MODE == 0) { centroid_decomposition_0_dfs(par, V, f); } elif constexpr(MODE == 1) { centroid_decomposition_1_dfs(par, V, f); } else { vc<int> real(N, 1); centroid_decomposition_2_dfs(par, V, real, f); } }
#line 2 "graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { static constexpr bool is_directed = directed; int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void build(int n) { N = n, M = 0; prepared = 0; edges.clear(); indptr.clear(); csr_edges.clear(); vc_deg.clear(); vc_indeg.clear(); vc_outdeg.clear(); } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } #ifdef FASTIO // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } #endif void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } #ifdef FASTIO void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } #endif vc<int> new_idx; vc<bool> used_e; // G における頂点 V[i] が、新しいグラフで i になるようにする // {G, es} // sum(deg(v)) の計算量になっていて、 // 新しいグラフの n+m より大きい可能性があるので注意 Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) { if (len(new_idx) != N) new_idx.assign(N, -1); int n = len(V); FOR(i, n) new_idx[V[i]] = i; Graph<T, directed> G(n); vc<int> history; FOR(i, n) { for (auto&& e: (*this)[V[i]]) { if (len(used_e) <= e.id) used_e.resize(e.id + 1); if (used_e[e.id]) continue; int a = e.frm, b = e.to; if (new_idx[a] != -1 && new_idx[b] != -1) { history.eb(e.id); used_e[e.id] = 1; int eid = (keep_eid ? e.id : -1); G.add(new_idx[a], new_idx[b], e.cost, eid); } } } FOR(i, n) new_idx[V[i]] = -1; for (auto&& eid: history) used_e[eid] = 0; G.build(); return G; } Graph<T, true> to_directed_tree(int root = -1) { if (root == -1) root = 0; assert(!is_directed && prepared && M == N - 1); Graph<T, true> G1(N); vc<int> par(N, -1); auto dfs = [&](auto& dfs, int v) -> void { for (auto& e: (*this)[v]) { if (e.to == par[v]) continue; par[e.to] = v, dfs(dfs, e.to); } }; dfs(dfs, root); for (auto& e: edges) { int a = e.frm, b = e.to; if (par[a] == b) swap(a, b); assert(par[b] == a); G1.add(a, b, e.cost); } G1.build(); return G1; } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 3 "graph/shortest_path/bfs01.hpp" template <typename T, typename GT> pair<vc<T>, vc<int>> bfs01(GT& G, int v) { assert(G.is_prepared()); int N = G.N; vc<T> dist(N, infty<T>); vc<int> par(N, -1); deque<int> que; dist[v] = 0; que.push_front(v); while (!que.empty()) { auto v = que.front(); que.pop_front(); for (auto&& e: G[v]) { if (dist[e.to] == infty<T> || dist[e.to] > dist[e.frm] + e.cost) { dist[e.to] = dist[e.frm] + e.cost; par[e.to] = e.frm; if (e.cost == 0) que.push_front(e.to); else que.push_back(e.to); } } } return {dist, par}; } // 多点スタート。[dist, par, root] template <typename T, typename GT> tuple<vc<T>, vc<int>, vc<int>> bfs01(GT& G, vc<int> vs) { assert(G.is_prepared()); int N = G.N; vc<T> dist(N, infty<T>); vc<int> par(N, -1); vc<int> root(N, -1); deque<int> que; for (auto&& v: vs) { dist[v] = 0; root[v] = v; que.push_front(v); } while (!que.empty()) { auto v = que.front(); que.pop_front(); for (auto&& e: G[v]) { if (dist[e.to] == infty<T> || dist[e.to] > dist[e.frm] + e.cost) { dist[e.to] = dist[e.frm] + e.cost; root[e.to] = root[e.frm]; par[e.to] = e.frm; if (e.cost == 0) que.push_front(e.to); else que.push_back(e.to); } } } return {dist, par, root}; } #line 3 "graph/centroid_decomposition.hpp" // 頂点ベースの重心分解 // f(par, V, indptr) template <typename F> void centroid_decomposition_0_dfs(vc<int>& par, vc<int>& vs, F f) { const int N = len(par); assert(N >= 1); int c = -1; vc<int> sz(N, 1); FOR_R(i, N) { if (sz[i] >= ceil<int>(N, 2)) { c = i; break; } sz[par[i]] += sz[i]; } vc<int> color(N); vc<int> V = {c}; int nc = 1; FOR(v, 1, N) { if (par[v] == c) { V.eb(v), color[v] = nc++; } } if (c > 0) { for (int a = par[c]; a != -1; a = par[a]) { color[a] = nc, V.eb(a); } ++nc; } FOR(i, N) { if (i != c && color[i] == 0) color[i] = color[par[i]], V.eb(i); } vc<int> indptr(nc + 1); FOR(i, N) indptr[1 + color[i]]++; FOR(i, nc) indptr[i + 1] += indptr[i]; vc<int> counter = indptr; vc<int> ord(N); for (auto& v: V) { ord[counter[color[v]]++] = v; } vc<int> new_idx(N); FOR(i, N) new_idx[ord[i]] = i; vc<int> name(N); FOR(i, N) name[new_idx[i]] = vs[i]; { vc<int> tmp(N, -1); FOR(i, 1, N) { int a = new_idx[i], b = new_idx[par[i]]; if (a > b) swap(a, b); tmp[b] = a; } swap(par, tmp); } f(par, name, indptr); FOR(k, 1, nc) { int L = indptr[k], R = indptr[k + 1]; vc<int> par1(R - L, -1); vc<int> name1(R - L, -1); name1[0] = name[0]; FOR(i, L, R) name1[i - L] = name[i]; FOR(i, L, R) { par1[i - L] = max(par[i] - L, -1); } centroid_decomposition_0_dfs(par1, name1, f); } } /* https://maspypy.com/%e9%87%8d%e5%bf%83%e5%88%86%e8%a7%a3%e3%83%bb1-3%e9%87%8d%e5%bf%83%e5%88%86%e8%a7%a3%e3%81%ae%e3%81%8a%e7%b5%b5%e6%8f%8f%e3%81%8d centroid_decomposition_1:長さ 1 以上のパス全体 f(par, V, L1, R1, L2, R2) [L1, R1): color 1 / [L2, R2): color 2 */ template <typename F> void centroid_decomposition_1_dfs(vc<int>& par, vc<int> vs, F f) { const int N = len(par); assert(N > 1); if (N == 2) { vc<int> p = {-1, 0}; vc<int> v = {vs[0], vs[1]}; f(p, vs, 0, 1, 1, 2); return; } int c = -1; vc<int> sz(N, 1); FOR_R(i, N) { if (sz[i] >= ceil<int>(N, 2)) { c = i; break; } sz[par[i]] += sz[i]; } vc<int> color(N, -1); int take = 0; vc<int> ord(N, -1); ord[c] = 0; int p = 1; FOR(v, 1, N) { if (par[v] == c && take + sz[v] <= floor<int>(N - 1, 2)) { color[v] = 0, ord[v] = p++, take += sz[v]; } } FOR(i, 1, N) { if (color[par[i]] == 0) color[i] = 0, ord[i] = p++; } int n0 = p - 1; for (int a = par[c]; a != -1; a = par[a]) { color[a] = 1, ord[a] = p++; } FOR(i, N) { if (i != c && color[i] == -1) color[i] = 1, ord[i] = p++; } assert(p == N); int n1 = N - 1 - n0; vc<int> par0(n0 + 1, -1), par1(n1 + 1, -1), par2(N, -1); vc<int> V0(n0 + 1), V1(n1 + 1), V2(N); FOR(v, N) { int i = ord[v]; V2[i] = vs[v]; if (color[v] != 1) { V0[i] = vs[v]; } if (color[v] != 0) { V1[max(i - n0, 0)] = vs[v]; } } FOR(v, 1, N) { int a = ord[v], b = ord[par[v]]; if (a > b) swap(a, b); par2[b] = a; if (color[v] != 1 && color[par[v]] != 1) par0[b] = a; if (color[v] != 0 && color[par[v]] != 0) par1[max(b - n0, 0)] = max(a - n0, 0); } f(par2, V2, 1, 1 + n0, 1 + n0, 1 + n0 + n1); centroid_decomposition_1_dfs(par0, V0, f); centroid_decomposition_1_dfs(par1, V1, f); } /* https://maspypy.com/%e9%87%8d%e5%bf%83%e5%88%86%e8%a7%a3%e3%83%bb1-3%e9%87%8d%e5%bf%83%e5%88%86%e8%a7%a3%e3%81%ae%e3%81%8a%e7%b5%b5%e6%8f%8f%e3%81%8d f(par, V, color) color in [-1,0,1], -1 is virtual. */ template <typename F> void centroid_decomposition_2_dfs(vc<int>& par, vc<int>& vs, vc<int>& real, F f) { const int N = len(par); assert(N > 1); if (N == 2) { if (real[0] && real[1]) { vc<int> color = {0, 1}; f(par, vs, color); } return; } int c = -1; vc<int> sz(N, 1); FOR_R(i, N) { if (sz[i] >= ceil<int>(N, 2)) { c = i; break; } sz[par[i]] += sz[i]; } vc<int> color(N, -1); int take = 0; vc<int> ord(N, -1); ord[c] = 0; int p = 1; FOR(v, 1, N) { if (par[v] == c && take + sz[v] <= floor<int>(N - 1, 2)) { color[v] = 0, ord[v] = p++, take += sz[v]; } } FOR(i, 1, N) { if (color[par[i]] == 0) color[i] = 0, ord[i] = p++; } int n0 = p - 1; for (int a = par[c]; a != -1; a = par[a]) { color[a] = 1, ord[a] = p++; } FOR(i, N) { if (i != c && color[i] == -1) color[i] = 1, ord[i] = p++; } assert(p == N); int n1 = N - 1 - n0; vc<int> par0(n0 + 1, -1), par1(n1 + 1, -1), par2(N, -1); vc<int> V0(n0 + 1), V1(n1 + 1), V2(N); vc<int> rea0(n0 + 1), rea1(n1 + 1), rea2(N); FOR(v, N) { int i = ord[v]; V2[i] = vs[v], rea2[i] = real[v]; if (color[v] != 1) { V0[i] = vs[v], rea0[i] = real[v]; } if (color[v] != 0) { V1[max(i - n0, 0)] = vs[v], rea1[max(i - n0, 0)] = real[v]; } } FOR(v, 1, N) { int a = ord[v], b = ord[par[v]]; if (a > b) swap(a, b); par2[b] = a; if (color[v] != 1 && color[par[v]] != 1) par0[b] = a; if (color[v] != 0 && color[par[v]] != 0) par1[max(b - n0, 0)] = max(a - n0, 0); } color.assign(N, -1); FOR(i, 1, N) if (rea2[i]) color[i] = (i <= n0 ? 0 : 1); if (real[c]) color[0] = 2, rea0[0] = rea1[0] = rea2[0] = 0; f(par2, V2, color); centroid_decomposition_2_dfs(par0, V0, rea0, f); centroid_decomposition_2_dfs(par1, V1, rea1, f); } // 0: f(par, V, indptr) // 1: f(par, V, L1, R1, L2, R2) // 2: f(par, V, color) template <int MODE, typename GT, typename F> void centroid_decomposition(GT& G, F f) { static_assert(!GT::is_directed); const int N = G.N; if (MODE != 0 && N == 1) return; vc<int> V(N), par(N, -1); int l = 0, r = 0; V[r++] = 0; while (l < r) { int v = V[l++]; for (auto& e: G[v]) { if (e.to != par[v]) V[r++] = e.to, par[e.to] = v; } } assert(r == N); vc<int> new_idx(N); FOR(i, N) new_idx[V[i]] = i; vc<int> tmp(N, -1); FOR(i, 1, N) { int j = par[i]; tmp[new_idx[i]] = new_idx[j]; } swap(par, tmp); static_assert(MODE == 0 || MODE == 1 || MODE == 2); if constexpr (MODE == 0) { centroid_decomposition_0_dfs(par, V, f); } elif constexpr(MODE == 1) { centroid_decomposition_1_dfs(par, V, f); } else { vc<int> real(N, 1); centroid_decomposition_2_dfs(par, V, real, f); } }